
HIERARCHICAL REINFORCEMENT LEARNING FOR AERIAL VEHICLES

Harsh Goel

A DISSERTATION

in

Robotics

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Masters of Science in Engineering in Robotics

2023

Supervisor of Dissertation

Dr. Vijay Kumar, Professor and Nemirovsky Family Dean

Graduate Group Chairperson

Dr. M. Ani Hsieh, Deputy Director, GRASP Lab and Associate Professor, MEAM

HIERARCHICAL REINFORCEMENT LEARNING FOR AERIAL VEHICLES

COPYRIGHT

2023

Harsh Goel

iii

iv

ACKNOWLEDGEMENT

I want to express my heartfelt gratitude to the many individuals who have supported and contributed

to the completion of this thesis.

First and foremost, I am deeply grateful to Dr. Vijay Kumar for his invaluable guidance, encour-

agement, and support throughout my master’s thesis. I would also like to sincerely thank my Ph.D.

mentors, Edward Hu, Pratik Kunapuli, and Laura Jarin Lipschitz, whose insights have enriched my

research experience. Their willingness to share their expertise has been immensely beneficial.

My appreciation goes out to my friends and family for their unwavering encouragement, under-

standing, and love. Their constant support and belief in me have been a source of strength and

motivation during challenging times.

I am also grateful to the faculty members and staff, especially Dr. Pratik Chaudhari and Dr. Ani

Hsieh, who have contributed to my academic and personal development.

To all those who have been a part of my academic journey, thank you for your unwavering support

and encouragement. Your contributions have played a significant role in the successful completion

of this thesis.

v

vi

ABSTRACT

HIERARCHICAL REINFORCEMENT LEARNING FOR AERIAL VEHICLES

Harsh Goel

Dr. Vijay Kumar

Aerial vehicles, including drones and unmanned aerial vehicles (UAVs), have witnessed remarkable

advancements in recent years, particularly in agriculture, delivery services, surveillance, and disaster

relief. However, achieving effective integrated trajectory planning and control of aerial vehicles

remains a significant challenge. While end-to-end control of aerial vehicles for specific tasks is

computationally intractable, hierarchical formulations, such as high-level task planners using motion

primitives, offer promising solutions.

We focus on the problem of hierarchical control and planning for aerial vehicles. We first address

the planning problem, where an aerial vehicle learns to compose a sequence of primitives for long-

horizon planning tasks. Subsequently, we tackle the problem of learning primitives or skills for

aerial vehicles from offline collected data, eliminating the reliance on handcrafted skills with inherent

design limitations.

In this thesis, we contribute to the advancement of hierarchical reinforcement learning for aerial

vehicles, offering an improved approach to enhance planning and control. The combination of high-

level policies with motion primitives and goal-conditioned policies paves the way for more efficient,

adaptable, and real-time task execution in complex environments.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENT . v

ABSTRACT . vii

LIST OF TABLES . x

LIST OF ILLUSTRATIONS . xi

CHAPTER 1 : INTRODUCTION . 1

1.1 Introduction . 1

1.2 Background . 4

1.3 Thesis Organisation . 8

CHAPTER 2 : ADAPTIVE INFORMATIVE PATH PLANNING WITH REINFORCEMENT

LEARNING ON MOTION PRIMITIVES 9

2.1 Abstract . 9

2.2 Introduction . 10

2.3 Related Work . 12

2.4 Problem Definition . 14

2.5 Planning Approach . 16

2.6 Results . 22

2.7 Conclusion . 28

CHAPTER 3 : OFFLINE GOAL CONDITIONED SKILL ACQUISITION FOR QUADRO-

TORS . 29

3.1 Abstract . 29

3.2 Introduction . 30

3.3 Background and Related Work . 33

3.4 Method . 35

viii

3.5 Experiments . 43

3.6 Conclusion . 48

BIBLIOGRAPHY . 49

ix

LIST OF TABLES

TABLE 2.1 Search Performance Comparisons of Baselines over a fixed budget 23
TABLE 2.2 Search Performance Comparisons of Baselines over a fixed budget for semantic

mapping . 25

TABLE 3.1 Performance Comparisons of polices learned by different algorithms on two tasks
Reach-Desired and Reach-Intermediate . 45

TABLE 3.2 Task performance over a set of 250 out-of-distribution goals with respect to a
goal-conditioned policy with and without the planner 46

x

LIST OF ILLUSTRATIONS

FIGURE 1.1 Overview of Methods. We are interested in the problem of hierarchical
reinforcement learning (RL) for aerial robots. In this approach, the agent
learns a task-specific high-level policy that selects goals, skills, or primitives.
The agent then uses a low-level skill or goal-conditioned policy to interact with
the environment. This thesis proposes learning a high-level task policy for an
informative search problem for aerial vehicles, assuming access to engineered
primitives. Additionally, we aim to learn a lower-level goal-conditioned policy
from offline data to distill motion primitives or skills. 2

FIGURE 2.1 Sample Task Setting and resulting trajectory. Quadrotor in a semantic
detection task, the image on the left shows a site with ground truth semantic
features. The image in the middle is the prior belief with darker blue regions
corresponding to the probability of occurrence of semantic feature, and the
image on the right is the path taken and the corresponding detected semantics
after the mission. 11

FIGURE 2.2 Model Architecture . 18
FIGURE 2.3 Visualization of the traveled trajectory at varying remaining bud-

gets. Agent’s starting position is depicted via a green dot and the ending
position is depicted via a red dot. From right to left, the plots show the (a)
True target distribution with targets marked in red; (b) Prior belief of the
map; the following plots show the traveled trajectory at c) 70% budget; d)
30% budget; (e) 0% budget. 22

FIGURE 2.4 Robustness of our approach with varying distributions of the prior.
The prior over the environment can be inaccurate when compared to the true
target distribution, as indicated by the KL divergence (x-axis). Our LSTM
approach (green generally performs better than the prioritized coverage (PC)
heuristic (purple), DP-IPP method (red), and coverage heuristic (blue in terms
of search efficiency (y-axis). Furthermore, our approach has smaller deviations
from the mean, indicating that the performance of our approach is robust to
varying divergence of the prior from the true target distribution. 24

FIGURE 2.5 Resulting trajectories with our learned planner for sample tasks.
Final path (right images) taken by the UAV for two semantic detection tasks
with their ground truth semantic targets (left-hand side), prior over semantic
features (middle) . 26

FIGURE 3.1 Proposed Approach. This image depicts the difference between sampling-
based motion primitives and data-driven goal-conditioned policies for trajec-
tory planning. The former involves stochastic sampling of waypoints or control
actions to build candidate paths, while the latter uses offline collected data
and learning to directly map states and achieved goals to actions, providing
primitives in the form of fine-grained goal-conditioned policies for smoother
trajectories. 31

xi

FIGURE 3.2 Visualization of dataset compiled for the quadrotor. A dataset of 250 desired
goals ρD(g) within a 1m to 2m position box, with random velocities up to
2.5 m/srange and accelerations between 5 m/s2. Reference trajectories are
planned and we plot the resulting trajectories of the aerial vehicle while track-
ing the reference trajectory using the controller. 36

FIGURE 3.3 Skill learning performance of different algorithms over the desired goals ρD(g)
over which the expert data is collected. The aerial vehicle is initialized at the
origin. 44

FIGURE 3.4 Skill learning performance of different algorithms over a mixture of interme-
diate achieved goals and desired goals from different initialization along the
expert trajectory . 45

FIGURE 3.5 Trajectory visualizations of the goal conditioned policy over the Reach-Desired
tasks . 46

FIGURE 3.6 Visualization of successful trajectories where the goal-conditioned policy reaches
an out-of-distribution goal (red) by planning an intermediate goal (green) from
the initial state at origin (orange). 47

xii

CHAPTER 1

INTRODUCTION

1.1. Introduction

In recent years, aerial vehicles, including drones and unmanned aerial vehicles (UAVs), have un-

dergone rapid advancements, transforming various industries and expanding their applications to

fields such as agriculture, delivery services, surveillance, and disaster relief. A critical challenge

in maximizing the utility of aerial vehicles lies in task-specific integrated trajectory planning and

control. While achieving end-to-end control for task completion is computationally intractable,

prior research has focused on hierarchical formulations, such as motion primitives, to enable feasible

planning.

This is in some ways similar to human intelligence whereby complicated general sets of tasks are

accomplished by humans using abstracted low-level skills, goals, or primitives. For instance, a

person walking doesn’t plan and control each muscle movement. These skills and primitives are

often learned through trial and error, or through demonstrations, and humans have a remarkable

capability to compose these primitives in sequence to complete tasks. Drawing inspiration from

human intelligence, this thesis centers on the problem of hierarchical control and planning for aerial

vehicles. Specifically, it explores two key aspects: 1) addressing the planning problem by enabling

an aerial vehicle to compose a sequence of primitives for long-horizon planning tasks, and 2) learning

primitives or skills for aerial vehicles from offline data, moving away from handcrafted variants that

are limited by design choices.

Conventional planning and control pipelines for quadrotors in various tasks are often decoupled

for computational efficiency, particularly during the thinking phase of the robot. For example,

in simple point-to-point locomotion in free space or constrained environments, waypoints are first

selected, followed by the optimization of a reference trajectory, and ultimately, the development

of a controller. However, this hierarchical construction becomes problematic in scenarios where

1

Figure 1.1: Overview of Methods. We are interested in the problem of hierarchical reinforcement
learning (RL) for aerial robots. In this approach, the agent learns a task-specific high-level policy
that selects goals, skills, or primitives. The agent then uses a low-level skill or goal-conditioned
policy to interact with the environment. This thesis proposes learning a high-level task policy
for an informative search problem for aerial vehicles, assuming access to engineered primitives.
Additionally, we aim to learn a lower-level goal-conditioned policy from offline data to distill motion
primitives or skills.

aerial vehicles must navigate narrow corridors or tunnels for inspection, mapping, or environmental

monitoring. In such tasks, a decoupled planning scheme as above would have to go through multiple

iterations to give good trajectories. Hence, the need for a tractable, real-time, and adaptable solution

arises especially in un-modelled emergent situations.

Motion primitives for aerial vehicles do enable such adaptability whereby we can embed low-level

actuator controls to a set of robot motions or skills. These motions or skills are embedded with

the kino-dynamic constraints of a robot, allowing us to bridge the gap between higher-level task

planning and actual control in a computationally tractable manner. Optimal task plans can initially

be computed using search-based planning with domain-specific heuristics for both online and offline

planning.

However, engineering heuristics for many multi-objective problems, such as informative search, can

be very challenging. Focusing on the problem of informative search, we present a method to compose

informative trajectories fully online for targets and semantic features. In this task, we pre-compute a

set of motion primitives offline based on optimally dispersed states to form a planning graph, which

2

can be spatially extended for long planning tasks. We then devise a framework to learn a policy

using reinforcement learning (RL) with these motion primitives as the action space for computing

informative paths. Unlike prior heuristic-based informative search algorithms, our approach is

trained, performant, and robust in scenarios where the prior over the search targets or semantics

doesn’t match the actual placement of the targets or semantics (exploration vs. exploitation). We

show that the RL-based planner learns to balance between exploiting the prior and exploring the

environment to search and identify targets or semantic features.

However, the motion primitives compiled for the above informative search problem suffer from

limitations and are restricted to fixed goal states sampled during offline compilation. To address

these limitations, we further propose a method to acquire lower-level locomotion skills or primi-

tives for quadrotors using goal-conditioned deep reinforcement learning. We present a method to

distill expert data consisting of motor thrust commands or desired thrust and angular velocity com-

mands, to a single goal-conditioned policy. This policy takes the current state and desired goal

state of the quadrotor as input and produces low-level control commands to reach the goal state

with high probability. We devise and propose experiments to demonstrate the quality of the learned

skills. Furthermore, we show an application of the learned skills especially when applied in trajec-

tory composition for an untrained out-of-distribution goal through planning a single intermediate

controller-feasible goal.

In summary, this thesis focuses on hierarchical control and planning for aerial vehicles. We first ad-

dress the planning problem through the learning of high-level planning policies on motion primitives

for an informative path planning task. Then we learn to improve over these primitives by learn-

ing low-level goal-conditioned policies. Extensive experiments demonstrate the efficacy and quality

of the learned goal-conditioned skills and learned high-level policies showcasing their potential for

trajectory composition for complex tasks such as informative search.

3

1.2. Background

In this section, we outline the basic concepts in the literature on hierarchical reinforcement learning

(HRL). HRL aims to resolve long-horizon tasks into a sequence of sub-goals or skills that are easier

to achieve. In this framework, a high-level controller learns to choose sub-goals or skills, which

then provide goal or skill commands to a lower-level controller that selects atomic control actions.

Typically, high-level controllers operate at larger timescales compared to lower-level controllers.

The low-level controller or skills can be learned offline through demonstration or online through

interactions, while the high-level controller is learned online. This setting is also called the options

framework [75] where an option can be defined as a skill that temporally abstracts a lower-level

control policy π : S ×A → [0, 1] where S and A are low-level states and actions for a given agent

pose and motor thrusts for UAVs. We formalize the framework as follows:

1.2.1. Partially Observable Semi Markov Decision Process

A Partially Observable Semi Markov Decision Process can be described as a tuple (S,Z,O, T,R,O,

γ, d0), where S and O denote the state space, and observation space respectively. R and O are the

reward and observation models, T is a transition dynamics model, d0 is the initial state distribution,

and γ is the discount factor. Z represents a finite set of temporally extended skills or primitives

that act in the environment for a maximum horizon of τ timesteps. The task reward is denoted

by R(st, zt) for a skill zt ∈ Z at state st ∈ S. The agent transitions to the next state st+1 after

executing a skill zt through a transition function T (· | zt, st).

The high-level policy π(zt|st) being learned does not have access to the true state st and instead

has access to an observation ot ∼ O(· | st). The policy can be stochastic or deterministic (one-hot)

distribution over the skill space Z. The objective is to maximize the cumulative expected return

from a trajectory sampled by unrolling the policy π from an initial state s0 ∼ d0 as follows:

J(π) = E
s0∼d0 zt∼π(·|ot)

ot∼O(·|st) st+1∼T (·|zt,st)

[
T∑
t=0

γt R(st, zt)

]
(1.1)

4

1.2.2. Deep Reinforcement Learning

Deep reinforcement learning aims to maximize the cumulative return J(π) under a policy is param-

eterized by a deep neural network θ as follows πθ.

θ∗ = argmax
θ

J(πθ) (1.2)

The policy is optimized by collecting data from many interactions in the environment. Many

algorithms exist for optimizing the returns over the policy parameters and we refer the reader to

Arulkumaran et. al [2]. In our setting, we use the Asynchronous Actor-Critic (A3C) [44] framework

to optimize a policy over primitives as described in the next section.

1.2.3. Skill Learning

While motion primitives have been quite successfully deployed on real robotic platforms such as

quadrotors, many of such constructions are often limited to carefully engineered discretization [36,

37] or sampling [10, 26, 27] of state or control spaces. However, these methods lack the flexibility

required for most real-life settings due to their inherent fixed time durations, discretizations, or

sampling constraints.

Recent methods have been devised that acquire these primitives for other robotic systems with

complex dynamics such as robotic arms whereby complex behaviors or skills are distilled from

expert play data [38], expert demonstrations [58, 69, 50, 79, 71, 78, 66, 40, 6] or online robot

interactions [67, 68, 12, 46, 21]. Here, the skills are typically represented in a normalized latent

space [58, 66, 67, 12, 69, 50, 84, 87], or through desired states or goals [40, 21, 46, 7, 92]. Typically,

latent skills or goals are used to condition a separate policy network during the learning process.

Such skills can then further be composed sequentially using a high-level planner over skill space

such as MPPI [86], CEM [59] or another RL policy [69, 21, 46, 8] to hierarchically complete tasks.

Here, skills serve as temporally extended actions that encode low-level control behaviors to reach

short-term goals or states, and higher-level planners plan on such skills to identify intermediate

goals for an agent to complete to accomplish these tasks.

5

Traditional planning and control stacks for quadrotors have typically relied on handcrafted skills or

motion primitives and in this chapter, we attempt to devise such primitives from quadrotor data.

The data is assumed to be unimodal and is collected from a single setting of an expert behavioral

policy, and this data is distilled into a single goal-reaching policy.

1.2.4. Goal Conditioned Reinforcement Learning

Standard RL involves a policy optimizing for cumulative task-specific rewards. However, for some

tasks specifying a reward structure can be quite challenging. Goal-conditioned RL on the other

hand augments the underlying MDP of the RL problem by specifying tasks as desired goals which

are then parsed with the observation while making a decision [1, 64]. In GCRL, the policy optimizes

a sparse reward obtained on reaching the goal within a specified margin. This creates additional

problems where distant to reach goals from a task perspective might not be achievable if the policy

fails to collect data over the necessary states required to reach those goals during its exploration

phase [56, 32, 35]. To alleviate this problem, researchers have proposed a set of tools to ensure

that the goal-conditioned policy learns to reach the necessary subgoals to achieve the task-specific

goal. The underlying training procedure for GCRL usually commands desired task-specific goals

for a policy to collect initial data on the achieved states and goals by the policy. The task-specific

goals are then relabelled with these achieved goals to sample additional trajectories and desired

goals [1, 15, 89, 51, 52, 9, 56, 25, 43]. Typical goal selection mechanisms include random relabelling

of achieved goals from future trajectories through online interactions [1, 15] or imagination [89].

Alternatively, rarely visited goals can be commanded to reach diverse and unexplored regions of the

state space in a model free[52, 51] or model-based [25, 43]. In GCRL, the goal-conditioned policy

can also be iteratively trained with supervised learning (behavior cloning) [11, 19, 90], an off-the-

shelf online RL algorithm [1, 15, 89, 51, 52, 9, 25, 43] or contrastive learning [14, 13]. Succinctly,

the goal-conditioned RL objective can be written as:

π∗ = argmax
π

E
s0∼µ(s) st∼T (.|st,at) g∼ρ(g) at∼π(.|st,g)

[
T∑
t=0

γt rg(st, at, g)

]

where µ(s) is the initial state distribution, T is the transition function, ρ(g) is the distribution of

6

goals, π is the goal conditioned policy and rg(. , . , .) is the goal conditioned reward.

1.2.5. Offline Reinforcement Learning

In this work, we use offline RL algorithms to distill goal-conditioned skills from a fixed dataset.

Offline RL algorithms are a recent development in the field of robotics where online data collection

on a robot can be expensive and difficult. This necessitates pre-training from fixed datasets that are

possibly obtained from a mixture of expert policies (multiple human demonstration data). Hence,

this paradigm generally penalizes out-of-distribution actions through a supervised learning loss

[88, 17] or minimizing the optimality of the out-of-distribution actions through their Q functions

[31]. On the other hand, implicit Q-learning [29] modifies the Bellman optimality update towards a

SARSA-like update, maximizing only over actions in the dataset. Most offline RL algorithms have

similar rationales of ensuring that the state action occupancy of the policy is equivalent to that of

the dataset. Goal-conditioned extensions to offline RL follow similar rationales [39, 91].

7

1.3. Thesis Organisation

The thesis is structured into three chapters, each addressing different aspects of hierarchical planning

and control for quadrotors. Here’s an improved version of the organization description with enhanced

clarity:

1. The first chapter provides a high-level overview of the problem of hierarchical planning and

control for quadrotors. It lays the foundation for the research by introducing the challenges

associated with task-specific integrated trajectory planning and control in aerial vehicles. The

chapter also presents the background of hierarchical reinforcement learning, focusing on how

skills or goals can be utilized for task planning, and explores goal-conditioned reinforcement

learning for skill acquisition.

2. In Chapter 2, the focus is on addressing the problem of informative search in aerial vehicles

using motion primitives. The chapter delves into the methodological approach of planning

informative trajectories fully online for targets and semantic features. It explains the rein-

forcement learning framework used to compute informative paths using pre-computed motion

primitives. The chapter highlights the advantages of this approach over existing heuristic-

based algorithms for informative search.

3. Chapter 3 proposes a learning-based framework for acquiring primitives or skills in the form of

a goal-conditioned policy. It presents a method to distill expert data, consisting of motor thrust

commands or desired thrust and angular velocity commands, into a single goal-conditioned

policy. This policy takes the current state and desired goal state of the quadrotor as input

and produces low-level control commands to reach the goal state with high probability. The

chapter showcases the quality of the learned skills through extensive experiments conducted

on the goal-conditioned policy.

8

CHAPTER 2

ADAPTIVE INFORMATIVE PATH PLANNING WITH REINFORCEMENT

LEARNING ON MOTION PRIMITIVES

2.1. Abstract

Adaptive informative path planning is the task of computing informative trajectories for an agent

to discover semantic features of interest in an environment while exploiting its current belief of the

feature states. This paper develops a deep reinforcement learning approach to plan informative

trajectories that increase the likelihood for an uncrewed aerial vehicle (UAV) to discover features.

Our approach efficiently (1) explores the environment to discover new semantic features, (2) exploits

its current belief of the feature states and incorporates inaccurate sensor models for high-fidelity

classification, and (3) generates dynamically feasible UAV trajectories using a motion primitive

library. We perform extensive simulations on a randomly generated dataset for feature detection

and a second dataset of real-world semantic maps. The results show that our DRL approach is more

efficient in discovering features than several other baselines. A unique characteristic of our approach

is that, in contrast to heuristic informative path planning approaches, it is robust to varying amounts

of deviations of the prior belief from the true feature distribution, thereby alleviating the challenge

of designing heuristics specific to the application conditions.

9

2.2. Introduction

Uncrewed aerial vehicles (UAVs) equipped with sensors play a vital role in inspection and monitor-

ing tasks, particularly in the aftermath of natural disasters. One compelling application involves

deploying UAVs in search and rescue scenarios after earthquakes to locate trapped individuals and

collapsed structures. In such situations, an operator might possess a prior belief regarding impor-

tant "semantic features of interest" based on past data, albeit incomplete and imprecise. This raises

a crucial question: How can we plan UAV trajectories to gather essential information while consid-

ering the prior belief of semantic features and respecting the UAV’s dynamics and energy budget?

This problem belongs to the broad class of NP-hard informative path planning (IPP) problems [30],

and in this chapter, we tackle it using a reinforcement learning approach.

This paper focuses on two critical challenges in the IPP problems. First, existing online IPP

methods used for target detection [70, 53, 41] or more broadly semantic mapping [62, 72, 33] relax

the constraint of planning dynamically feasible trajectories in real-time. It is essential to ensure

that the UAV’s trajectory adheres to its dynamics and energy budget for a feasible, smooth, and

efficient traversal in the environment.

Secondly, our proposed approach incorporates the prior belief of the semantic features of interest,

which sets it apart from many existing methods that assume a uniform distribution. Furthermore,

the prior belief is generally incomplete and imprecise. Hence, trajectory planning requires a bal-

ance between classifying highly uncertain regions and improving estimates to confirm the existence

of features of interest. This leads to the classical trade-off between exploration and exploitation

[70] problem that is compounded with sensing uncertainty for which designing good heuristics for

informative path planning algorithms is challenging.

To address these challenges, this paper develops a hierarchical reinforcement learning (HRL) frame-

work for the IPP problem. We augment the framework with dynamically feasible motion primitives

that abstract the lower-level control and trajectory optimization for quadrotors [42, 36]. This hi-

erarchical structure draws inspiration from the options framework [55] enabling the learning of

10

Figure 2.1: Sample Task Setting and resulting trajectory. Quadrotor in a semantic detection
task, the image on the left shows a site with ground truth semantic features. The image in the
middle is the prior belief with darker blue regions corresponding to the probability of occurrence
of semantic feature, and the image on the right is the path taken and the corresponding detected
semantics after the mission.

policies that plan feasible trajectories in real-time. This is in contrast to computationally pro-

hibitive end-to-end RL methods that predict and learn the control actions for the agent. In our

approach, we utilize a semi-Markov decision process (SMDP) to effectively model the environment

and its evolving dynamics. The SMDP framework allows us to incorporate the temporal aspects of

the environment, which is crucial for informative path planning in complex scenarios.

In our approach, we utilize a semi-Markov decision process (SMDP) [77] to effectively model the en-

vironment and its evolving dynamics. The SMDP framework allows us to incorporate the temporal

abstraction aspects of the environment where the UAV executes its motion primitives and continu-

ously updates and refines the beliefs over semantics features or targets in the environment. Sensing

information obtained during the execution of each motion primitive contributes to this dynamic

model update. We learn a task-level policy on these primitives and through extensive evaluation,

we show that our learned policies permit robust decision-making that trades off between exploration

and exploitation arising due to incomplete and imprecise priors and measurement updates.

11

2.3. Related Work

Informative path planning algorithms have been broadly applied for many active sensing problems

such as target search [53, 41, 81], environmental monitoring [45, 60], inspection [24] and mapping

[62, 72, 54, 65]. We present a brief background on literature for informative path planning and its

applications to target search and semantic detection.

IPP algorithms for these applications can be broadly classified into five categories: coverage, com-

binatorial, sampling, optimization, and learning-based. Coverage planners [72, 18] are widely used

IPP algorithms that follow pre-specified paths to cover the entire environment. Coverage planners

follow pre-specified paths to cover the entire environment but often lack optimization for informa-

tion gain, leading to suboptimal performance[62, 60, 4]. On the other hand, combinatorial methods

[70, 73, 3] provably plan non-myopic informative paths. However, they can potentially query an

exponentially large search space to obtain feasible trajectories and are computationally inefficient

for online re-planning.

Sampling and optimization-based approaches improve over combinatorial-based planners. These

methods typically begin by sampling waypoints greedily [53, 41, 62, 54], or sampling waypoints to

build a tree [45, 65, 23, 82] or control actions [82] to compute candidate paths. These paths are

then optimized over an information-theoretic measure, such as entropy, and have shown to be prob-

abilistically optimal. However, the optimization routine which forward propagates many simulated

measurements across the sampled candidate paths to compute this information-theoretic utility is

unsuitable for online planning during agile flights. To make online planning feasible, greedily sam-

pling candidate waypoints by computing expected information gain [4, 63] is a commonly adapted

strategy to compute informative trajectories at the cost of performance [62].

Learning-based methods commonly inspired by Reinforcement Learning (RL) [2] have been pro-

posed to address the problem of adaptively planning trajectories computationally efficiently with-

out performance degradation. Many RL-based IPP solutions have been formulated for exploration

[81], environmental monitoring [60], search and rescue [47] and localization of sources [85]. However,

12

these methods have been shown to be restricted to action spaces of the next candidate measurement

sites and therefore planned trajectories are dynamically infeasible.

In contrast to existing work, our approach plans dynamically feasible trajectories by adapting motion

primitives, which are computed offline. This enables online informative trajectory generation for

agile UAVs. Leveraging the advantages of learning-based methods over classical informative path

planning approaches, our planning approach algorithm leverages the A3C method to train a policy

over an offline set of primitives to plan dynamically feasible informative paths.

13

2.4. Problem Definition

We model the semantic features of interest (FoI) detection task as an informative path-planning

problem where we describe the mapping approach and the simulated sensor model. The environment

can either have a single semantic FoI (target) which we refer to as target search or multiple semantic

FoI which we refer to as semantic feature detection. In both settings, a UAV operates at a fixed

altitude and executes a motion primitive. Along the path undertaken by the primitive, the UAV

collects measurements in the form of semantic labels from a simulated sensing module which is used

to update its beliefs over semantic features. The UAV would plan another primitive to execute

using the updated belief map.

2.4.1. Informative Path Planning

The problem is cast as an informative trajectory planning problem where the overall objective is to

choose an optimal trajectory ψ∗ from a collection of admissible trajectories Ψ that maximizes the

information-theoretic utility I on the target estimate. The IPP objective is defined as [53]

ψ∗ = argmax
ψ∈Ψ

I[Measure(ψ)] (2.1)

s.t Energy(ψ) ≤ B.

Where B denotes the energy budget available for the flight of the drone, Measure(·) denotes

the information gathered along the path ψ through a sensor. Energy(·) estimates the energy

requirement to execute the given path.

2.4.2. Environment Model

The probability of a semantic feature existing in the environment at a given location is modeled

as discrete occupancy grids for each semantic category that also includes background semantics.

Thus, a measurement zt at a given time t updates the observed cell mxy via the log updates [80] as

follows:

L(mxy | z1:t, x1:t) =
N∑
t=1

log
p(zt | mxy)

p(zt | m̃xy)
+ L(mxy) (2.2)

14

where p(zt|mxy) denotes the forward sensor model, mxy refers to an occupied cell and m̃xy refers

to a free cell, and L(mxy) denotes the log odds of the belief prior at location (x, y) in the grid. A

semantic feature is recognized if its occupancy probability is above 95%.

2.4.3. Sensor Model

We assume that the UAV is equipped with a downward-looking camera that provides a semantic

label zt ∈ [0, n] at time t where n is the number of semantic categories. Since the sensor is at a fixed

altitude, we assume that the sensor has a fixed rectangular footprint on the environment. Here, we

also assume that the likelihood of the sensor providing the correct semantic label p(zt | mxy) given

that it observes the environment varies with the distance of the camera from the ground.

15

2.5. Planning Approach

Our planning approach has two key features. First, this method exploits the strengths of motion

primitives constructed offline that respect the vehicle dynamics and can be extended spatially to

plan in unbounded configuration spaces. Second, this approach learns a policy network over motion

primitives conditioned on scaled-up egocentric views of feature maps. The policy can be executed

during run time for fast re-planning based on the current state of the occupancy map. Our approach

is suitable for both binary target mapping and semantic feature detection, and we briefly describe

the observation space, state space, and respective action spaces.

2.5.1. Trajectory Parameterization via Dispersion Minimizing Motion Primitive Graphs

By incorporating dynamics information, UAVs can execute agile paths for a monitoring or target

search task which is a primary limitation of prior work. As such we parameterize trajectories by

generating a motion primitive graph oversampled states that minimize the asymmetric dispersion

costs max(J(x,v), J(v,x)) between quadrotor states x ∈ X and sampled graph nodes v ∈ V [26]

evaluated via trajectory optimization on quadrotor dynamics[36].

d(V) = sup
x∈X

min
v∈V

[max(J(x,v), J(v,x))] (2.3)

Hence, our approach defines these trajectory segments offline and can be spatially extended by

leveraging the translational invariance property in UAV dynamics for planning in unbounded con-

figuration spaces [27].

2.5.2. IPP with primitives as a HRL problem

We cast IPP problem as an HRL problem where the objective is to maximize the total information

gain for semantic detection over a trajectory sampled from the spatially extended motion primitive

graph. The POSMDP for the IPP is defined as follows:

States

In our setup, the agent’s global state consists of three crucial maps - belief maps, coverage maps,

and obstacle maps. For the target search application, our agents maintain a single belief map

16

solely focused on tracking targets. The belief maps are sized at 30 meters by 30 meters with a fine

resolution of 1 meter by 1 meter per pixel, without any padding.

For the semantic detection application, our agents manage multiple belief maps, each corresponding

to a semantic category, including an additional map for the background. Initially, the environment

size for semantic detection is a 1024 meters by 1024 meters satellite view, down-scaled to produce

a semantic map of 256 by 256 pixels at a resolution of 4 meters by 4 meters per pixel.

Throughout both applications, we dynamically update the belief maps based on sensor measure-

ments collected during the execution of motion primitives. These updates continuously refine the

agent’s understanding of the environment and the presence of targets or semantic features. To

further enhance the learning of valid motion primitives, particularly near the environment’s bound-

aries, we maintain an obstacle map. This map indicates whether a specific space is free or occupied

by an obstacle. Since our focus lies in free-space environments, the obstacle map represents the

boundaries of the environment.

Additionally, our agents keep a coverage map, which gets updated as they execute motion primitives

and their sensors interact with the environment. This coverage map serves to identify the areas

explored and covered by the agent. This helps in discovering new areas in the environment for

further investigation. Together, the combination of these three maps and the quadrotor’s global

state provides a comprehensive representation of the environment and its dynamics.

Observations

For informative search applications, the size of the environment may vary by application. Hence,

using the above state representations as inputs would require a change in the architecture of the

policy network and the network would have to be re-trained. To prevent this we adopt an observation

model that takes in an egocentric view of the belief, obstacle, and coverage maps of the agent (see

Fig. 2.5.

Using local information may make the learned policies myopic, hence we also add egocentric ob-

servations at different scales [1,2,4] see Fig. 2.5. The egocentric observations at higher scales are

17

Figure 2.2: Model Architecture

down-sampled (reduced resolution). In the target mapping application, [8 x 8, 16 x 16, 32 x 32]

pixel patches around the agent for each map are taken and down-sampled to [8 x 8] patches each.

In the semantic feature detection application, we consider [48 x 48, 96 x 96, 192 x 192] pixel patches

around the agent for each map taken and down-sampled to [24 x 24] patches as inputs to the policy

network. Observations to the policy network also include the position of the UAV normalized to the

size of the map, the one-hot encoding of the prior motion primitive taken, and the one-hot encoding

of the current state node V on the motion primitive graph G.

Actions

Given a motion primitive lattice (G = (V,E)), the skill space of the UAV is composed of primitives

E(v) at the node v of the motion primitive graph. A stochastic policy is outputted over the set of

valid motion primitives at the given state. These valid primitives are learned for collision avoidance

at environment boundaries and the dynamic feasibility of the path through a valid loss specified in

2.5.3.

18

Rewards

Rewards are designed for the agents to reduce the uncertainty of the target occupancy map, prior-

itize covering high-target occupancy estimate regions, and find targets as quickly as possible while

penalizing high-cost primitives to transition across states. Here, the reward for the uncertainty

reduced is characterized by the reduction in the entropy of the map as follows:

H(Mt) =
∑
xy∈R2

H(mxy | z1:t) (2.4)

Thereby the rewards due to the reduction in the uncertainty of the map are given by:

rt = H(Mt+1)−H(Mt) (2.5)

where Mt+1 is the state of the map at time t + 1 after primitive action at is executed. The total

reward to reduce the total entropy of the map to 0 is +15. In addition, we define the coverage

reward as the proportion of unvisited areas covered with respect to the environment size when a

primitive zt is executed. This reward is essential for the UAV to increasingly explore the environment

and the maximum reward is +10.0 for covering the entire map. In addition, agents are rewarded

for detecting semantics or targets once their occupancy probability exceeds 0.95. This reward is

much higher than uncertainty reduction and coverage (+20 for each semantic category or target)

as this would motivate agents to discover better behaviors that balance between exploration and

exploitation, instead of over-fitting to the coverage and uncertainty reduction reward. Additionally,

a penalty is in proportion to the cost of the selected primitive. This cost is quantified by the total

energy cost and time taken to execute the primitive [26] and is cumulatively set to (-20) for an

episode in order for the agent to take longer informative paths.

2.5.3. Learning

We leverage the A3C framework to train a policy over the motion primitive graph where environ-

ments are generated across many local worker threads and a global policy network is updated via

gradients from local experience buffers in individual workers.[44].

19

Environment Generation

We train our policy across various iterations of generated environments to prevent over-fitting for

both the target mapping and semantic detection environments.

For the target mapping scenario, ground truth targets are generated from a ground truth distribution

(GT) (referred to as the world model) modeled as a GMM. An agent’s prior belief over targets is

initialized by shifting the ground truth Gaussian centers and sampling additional Gaussian centers

as noise. Through this modification of the ground truth distribution, policies learned would not

directly exploit the agents’ belief to find targets as agents’ beliefs in a real-world setting are expected

to be inaccurate to an unknown degree.

In the semantic detection setting, we obtain the ground truth distribution of the semantic targets

through the open-source software OpenStreetMap over various University locations. A GMM is

approximately fit over each semantic feature ground truth distribution to model an agent’s belief

over each semantic feature. Additionally, random noise is injected into the weights of the Gaussian

mixture to ensure that the semantic feature priors are not directly exploitable and the policy learns to

balance between exploration and exploitation to efficiently detect semantic features in the presence

of inaccurate semantic priors.

Network Architecture

The actor-critic network outputs a policy π(· | ot; θc), a value estimate Vδ(ot; θc) and an estimate of

valid actions ψ(· | ot; θc) from the observation inputs, as shown in Fig 2.5. Here the value estimates

are computed separately for each reward contribution as specified in the reward structure. The

value are predicted separately predicted for the coverage (δ = cov), map entropy reduction (δ = e),

cost (δ = c), and semantic feature search portions(δ = r) of the reward. Here ot = {oi}ti=0 refers

to the history of observed spatial map inputs, which is maintained through an additional LSTM

module.

20

Training Losses

During a training episode, the agent samples an action (primitive) from the policy distribution at

a given observation and an episode terminates once the agent exhausts its budget.

The critic is regressed against the discounted lambda returns Gλt [76]. Empirically λ = 0.8 gave us

the best results. The critic loss is given by

Lθc =

T∑
t=0

(
Gλt − V (ot; θc)

)2
(2.6)

To improve the policy π(· | ot; θp), the advantage A(ot, zt; θ) = r(st, zt)+γV (ot+1; θc)−V (ot; θc) is

computed for a given primitive [44]. These advantage terms are discounted from a given time step to

compute the generalized advantage estimate AGAEt [76] for the actor loss Lactor =
∑T

t=1 log (π(zt |

st; θp)) A
GAE
t .

In addition, we add a one-step entropy loss Lent =
∑T

t=1H(π(st); θp)) to encourage exploration and

a supervised asymmetric binary cross entropy loss Lval to ensure that the policy network outputs

a valid distribution over primitives. The supervised loss heavily penalizes invalid primitives. While

action masking is an alternative strategy, in practice we found it to be brittle to use to train policies

due to the asynchronous nature of the gradient updates made to the policy network.

Lval =

T∑
t=1

β1(1− yt) log(1− ϕ(st; θp)) + β2yt log(ϕ(st; θp)) (2.7)

where yt refers to the set of valid actions/primitives. In summary, the policy loss can be given by:

L(θp) = α1Lent − α2 Lactor + Lvalid (2.8)

21

2.6. Results

(a) (b) (c) (d)

(e)

Figure 2.3: Visualization of the traveled trajectory at varying remaining budgets. Agent’s
starting position is depicted via a green dot and the ending position is depicted via a red dot. From
right to left, the plots show the (a) True target distribution with targets marked in red; (b) Prior
belief of the map; the following plots show the traveled trajectory at c) 70% budget; d) 30% budget;
(e) 0% budget.

We evaluate our policy with respect to the state-of-the-art IPP heuristics over a fixed suite of test

environments for both target mapping and semantic mapping. We generate 100 test environments

for target search and 30 test environments for semantic feature detection following the environment

generation strategy described in Section 2.5.3. Note that the ground truth semantic features are

fixed and obtained from OpenStreetMap for the semantic detection environments, unlike the target

search environments. We evaluate the search performance of the agent based on a fixed starting

location of the robot in the environment.

2.6.1. Benchmark Algorithms

To our knowledge, existing methods do not use dynamically feasible motion primitives for IPP.

Hence, our method is evaluated against some of the classical well-tuned IPP heuristics which have

been adapted to our motion primitive framework to ensure a fair comparison.

22

Table 2.1: Search Performance Comparisons of Baselines over a fixed budget

Methods Coverage
(%)

Entropy
Reduction

(%)

Search
Efficiency

(%)

Greedy-IPP 40.94±23.71 41.76 ±24.54 54.37±33.18

DP-IPP 57.84±11.73 60.23±12.42 80.24±20.84

CMAES-IPP 52.10±7.03 55.81±7.43 75.52±15.95

Coverage 62.24 ± 0.28 60.48 ±1.48 82.07±10.53

Prioritised Coverage 51.99±10.10 56.10±10.56 82.49±18.11

Ours-noLSTM 57.72±3.22 61.26±3.37 85.73±10.02

Ours-LSTM 60.20±3.31 63.75±2.77 88.52±8.71

.

1. Greedy: The greedy algorithm selects the primitive with the highest one-step utility. Here

the utility is the informativeness of a certain location (x,y) on the map and is defined as:

I(q) = f1mxy + f2H(mxy)

2. Dynamic Programming: Dynamic Programming maximizes information gain over a sequence

of primitives in a receding horizon manner. Here, the agent executes a single primitive and

replans.

3. Covariance Matrix Adaptation Evolutionary Strategy(CMAES): CMAES[48] samples a se-

quence of primitives and refines these paths over a fixed horizon (5) to maximize information

gain. The sequence of primitives over the fixed horizon is then executed for the duration of

that horizon.

4. Online Coverage: Agents maximize the uniform coverage utility to determine the next motion

primitive to execute at a given state.

5. Online Prioritized Coverage: Agents prioritize coverage utility towards regions with higher

23

target or semantic occupancies when planning for the next motion primitive.

2.6.2. Results on Target Search

Table 1 shows the performance of the algorithms averaged out over a set of 100 test environments

with varied ground truth target distributions and we conclude that the performance of our method

outperforms the baseline heuristics implemented in terms of search efficiency. Fig 2.3 shows an

example of the traveled path taken by the quad-rotor for target search over a 2D environment

through our learned policy over motion primitives. The left plot confirms that the agent explores

the space while re-visiting some of the sites to improve estimates that would result in finding targets.

Figure 2.4: Robustness of our approach with varying distributions of the prior. The
prior over the environment can be inaccurate when compared to the true target distribution, as
indicated by the KL divergence (x-axis). Our LSTM approach (green generally performs better
than the prioritized coverage (PC) heuristic (purple), DP-IPP method (red), and coverage heuristic
(blue in terms of search efficiency (y-axis). Furthermore, our approach has smaller deviations from
the mean, indicating that the performance of our approach is robust to varying divergence of the
prior from the true target distribution.

Through extensive tests, we conclude that our approach outperforms the baseline heuristics by

learning a policy over motion primitives that balances exploration and exploitation. A pure ex-

24

Table 2.2: Search Performance Comparisons of Baselines over a fixed budget for semantic mapping

Methods Coverage
(%)

Entropy
Reduction

(%)

Search
Efficiency

(%)

Greedy-IPP 14.21±2.27 2.57±1.48 6.53±1.98

DP-IPP 67.83±7.21 30.08±3.73 53.03±5.38

CMAES-IPP 33.64±19.95 8.72±8.42 20.54±15.31

Coverage 88.67 ±0.0 30.77 ± 4.43 60.07±2.47

Prioritised Coverage 69.13±11.75 15.24±4.91 34.51±8.27

Ours-noLSTM 74.88± 2.59 32.16±4.91 59.56 ±2.74

Ours-LSTM 83.78 ± 3.43 34.24±6.10 63.61 ±3.08

ploration strategy such as the coverage heuristic seeks out primitives that visit more unobserved

locations in the environment, hence, having the highest coverage performance but poorer target

search performance. On the other hand, prioritized coverage is an exploitation-based strategy,

hence, primitives which would most likely confirm the existence of the target are selected, thereby,

sacrificing coverage for improved target search efficiency. However, targets in the unexplored space

of the environment weren’t found. To account for this, the information-theoretic utility described

above for IPP-based algorithms was tuned to balance exploration vs exploitation. Hence, these

methods especially DP-IPP-based were observed to have better coverage performance and uncer-

tainty reduction as compared to prioritized coverage, however, target search efficiency was slightly

worse as the agent failed to revisit areas to better confirm the existence of targets. CMAES-IPP had

poor trajectory quality due to limited online re-planning. In contrast, our learned policy is able to

balance both these requirements. The policy maintains high levels of environmental coverage(2nd

to coverage-based heuristic) while improving target search efficiency (better than prioritized cov-

erage), indicating that our planning approach learns a policy to balance between exploration and

exploitation as compared to IPP-based methods.

This result is also substantiated by Fig 2.4, where we contrast the performance of our approach,

prioritized coverage, and DP-IPP with respect to the KL divergence between the ground truth

distribution and the agent’s prior. We show that our learned policy not only outperforms but also

25

Figure 2.5: Resulting trajectories with our learned planner for sample tasks. Final path
(right images) taken by the UAV for two semantic detection tasks with their ground truth semantic
targets (left-hand side), prior over semantic features (middle)

is more robust than both DP-IPP and Prioritised coverage in terms of search efficiency when the

prior beliefs diverge significantly from the ground truth target distribution from which targets are

sampled.

2.6.3. Results on Semantic Feature Detection Environments

In addition to target search, we also validate our learning framework over 30 semantic feature

detection tasks with fixed priors over semantic features across all tests. Policies learned by our

method outperform the baseline heuristics implemented in terms of semantic detection efficiency

(see Table 2).

For semantic feature detection, we observe that the coverage algorithm outperforms all the baseline

heuristics. Agents with greedy-based IPP planners were often found to get stuck at local minima

and thereby their search performance was observed to be poorer. In the case of CMAES-IPP,

limited online planning coupled with the stochasticity in the path sampling procedure resulted in

26

trajectories that often went beyond the environment bounds and the lack of adaptation to the

current state typically resulted in invalid episodes. In contrast, prioritized coverage was observed to

have degraded performance compared to DP-IPP and coverage. Due to multiple semantic features,

the algorithm failed to plan trajectories that would reliably improve the detection of each category.

DP-IPP-based methods had poor solution quality due to insufficient coverage. In contrast to the

baselines, our learned policy maintains a competitive coverage over the environment while improving

semantic search efficiency as compared to the coverage-based heuristic.

2.6.4. Simulation Verification

We demonstrate our planning approach in a realistic Gazebo simulation for both target mapping

and semantic mapping. For target mapping, the targets (boxes) are randomly placed and a prior

for the target occupancy map is initialized over the search space. For semantic mapping, we use

the ground truth semantic map generated from OpenStreetMap over the University of Pennsylvania

and assign a prior over each semantic feature as discussed earlier.

The policy learned with our proposed approach is merged with the Kumar autonomy stack for real-

time flight planning over a simulated in-house Falcon 4 platform. The UAV executes the primitive

outputted via the policy network during run time, collects measurements using a simulated camera,

and updates the semantic map.

27

2.7. Conclusion

This paper proposes a novel RL-based adaptive Informative Path Planning with policies defined

over dynamic motion primitives of a fast-moving robot to achieve target search. The proposed

algorithm enables fast information gathering for active classification tasks by planning dynamically

feasible agile paths. A key component in our approach is the use of motion primitives to parame-

terize trajectories that respect UAV’s dynamics. The learned policy is validated by comparing its

performance to multiple IPP-based benchmarks adapted over motion primitives and improves target

search efficiency without compromising on runtime constraints, and adaptive replanning to balance

between exploration and exploitation. Future work would investigate this planning approach for 3D

UAV planning with real-world experiments for experimental validation, and UAV teams.

28

CHAPTER 3

OFFLINE GOAL CONDITIONED SKILL ACQUISITION FOR QUADROTORS

3.1. Abstract

In this chapter, we present a learning-based approach to address the formulation of motion primitives

or locomotion skills for an aerial vehicle. By employing goal-conditioned deep reinforcement learning,

we acquire reusable locomotion skills from expert data by learning a single goal-conditioned policy.

This chapter experiments with different offline goal-conditioned RL algorithms for skill learning

and identifies a viable choice for learning goal-conditioned skills from expert data. We further

demonstrate the efficacy of the learned skills by proposing a planner that plans intermediate goals

to reach an out-of-distribution task goal. By utilizing skill learning frameworks on offline quadrotor

data and the proposed planner, we aim to close the gap between motion planning and control.

29

3.2. Introduction

A hallmark of human intelligence has always been the ability to accomplish a general set of tasks

using low-level skills goals or primitives. These skills and primitives are often learned through trial

and error, or through demonstrations, and humans have a remarkable capability to compose these

primitives in sequence to complete tasks.

Motion primitives have also been popularly used for real-time tasks such as mapping [10] and

navigation [26] [27] and informative target search [20] using aerial vehicles. These primitives can be

queried online during task completion [10] or can be constructed offline [26]. A primary advantage

for motion primitives generated online by sampling from the control space and forward propagated

based on the robot’s current state is that it produces dynamically feasible and continuous task-

specific paths. However, given that the planning query is often posed in the state space, the

selection and generation of a satisfactory set of primitives from the input space in an online manner

is not obvious for nontrivial system dynamics [26]. Furthermore, these primitives are constructed

from aerial vehicles’ current states, hence these are often not reusable [10].

On the other hand, motion primitives that are constructed offline enable reusability while preserving

generalization to various tasks by first forming a planning graph over the environment [26][27]. These

planning graphs can be further queried downstream either online or offline to compose trajectories

for the robot to complete such tasks. A typical planning pipeline involves computing an optimal

plan prior to task completion or execution; during what is colloquially called the ‘thinking’ phase

of the robot. Alternatively, search heuristics [20] [27] can be employed to approximate the optimal

motion plans for some tasks to make online planning feasible.

However, motion primitives constructed offline are limited to either fixed durations of time or fixed

sampled states [26, 27] and thereby constrain the quality of trajectory planning. This is corroborated

in [27] work where straight paths are often composed of loopy motion primitive segments.

In summary, existing techniques for devising motion primitives have two major shortcomings. First,

composing lower-level skills for smooth online trajectories can be computationally expensive and

30

Figure 3.1: Proposed Approach. This image depicts the difference between sampling-based
motion primitives and data-driven goal-conditioned policies for trajectory planning. The former
involves stochastic sampling of waypoints or control actions to build candidate paths, while the
latter uses offline collected data and learning to directly map states and achieved goals to actions,
providing primitives in the form of fine-grained goal-conditioned policies for smoother trajectories.

non-reusable if done online. Second, these primitives if learned offline are often restricted to fixed

durations of time or fixed goal states if done offline, thereby constraining downstream planning

quality.

We aim to propose a learning-based method whereby robots particularly quadrotors can acquire

such lower-level locomotion skills or primitives that permit good quality planning solutions online.

We would look to learn such primitives to complete a simple navigation task of moving a quadrotor

to a specified goal state without having any explicit expert data to reach this goal. Just as motion

primitives can be formulated to be reused [26], we learn to capture and acquire reusable skills that

could be chained downstream to accomplish complex tasks.

These locomotion skills or primitives can be conditioned on image, language, or robot state [34].

In light of its recent successes in the robotics domain, goal-conditioned deep reinforcement learning

31

(RL) has the potential to learn such skills or primitives. Particularly, recent work has seen the

development of methods to distill a goal-conditioned policy parameterized by a neural network from

expert data [84, 40]. For a quadrotor, this expert data would consist of either lower-level motor

thrust commands or desired thrust and angular velocity commands that reach some desired goal

states in the form of orientation, velocity, and position from raw aerial vehicle states in accordance

with the dynamics of the vehicle. We aim to distill this expert data into a single goal-conditioned

policy that captures continuous state-based locomotion skills for quadrotors whereby the policy

takes the aerial vehicle’s current state and desired goal state as input and produces low-level control

commands to reach the desired goal state with high probability. This is in contrast to [26] where

fixed goal states are sampled within a handcrafted reachability set for aerial vehicles. Our approach

would result in low-level goal-conditioned skills or primitives for the quadrotor that would not be

restricted to a fixed time duration or fixed states. Having access to this controller, the agent would

have to optimize for a sequence of controller feasible goals to complete the task.

Thus the contributions of this chapter are two-fold. We first propose a method to distill a base

set of skills completely offline from data collected from an expert controller to accomplish a set of

proximal goals. The goal-conditioned skills trained offline are then used by a proposed planning

module to reach goal states not present in the training data. Through this planning module, we also

show that we can learn to reach a large proportion of distant goals which are out-of-the-distribution

of the training goals as compared to a goal-conditioned policy trained on expert data.

32

3.3. Background and Related Work

3.3.1. Quadrotor Dynamics

The quadrotor is a 6-degree of freedom robot with a mass m and inertia matrix J = diag(Jx, Jy, Jz).

The full state x of the quadrotor can be defined by a vector [p,q,v, ω,Ω] where p is the position,

q is the orientation, v is the velocity, ω is the body rate and Ω is the rotor speed of the quadrotor.

Assuming no friction or rotor drag, the dynamics of the quadrotor are written as:

ẋ =



ṗ

q̇

v̇

ω̇

Ω̇


=



v̇

q .

0
ω


1
m(q⊙ fprop) + gw

J−1(τprop − ω × Jω)

1
Cm

(Ωcmd −Ω)



where gw = [0 0 − 9.81m/s2] denotes earth’s gravity, fprop, τprop are the collective force and the

torque produced by the propellers. Each propeller i produces a force fprop,i = [0 0 kfΩ
2
i] and moment

Mprop,i = [0 0 kwΩ
2
i] along the body frame. Thus the total force fprop = [0 0

∑
i fprop,i] in the body

frame and a moment τprop =
∑

iMprop,i + rprop,i × fprop,i. Here rprop,i is the distance of the rotor

from the body’s center of mass in the body frame.

3.3.2. Trajectory Planning and Control in Quadrotors

Trajectory planning and control for quadrotors can be primarily classified into three classes - dif-

ferential flatness-based, optimization-based, and search/sampling-based.

Quadrotor trajectory generation via differential flatness is one of the most popular and hardware-

tested paradigms for quadrotor flight [42]. Here, the planning and control are segregated, where

a trajectory plan is generated to a goal state(s) by leveraging the differential flatness property of

aerial vehicle platforms, and a tracking controller is designed to track the target trajectory [42].

33

These trajectories are typically represented by a polynomial on the flat outputs [42, 22]. Obtaining

an optimal trajectory plan and associated control commands are fast to compute and generalizable

to many goal states using a standard constrained quadratic program[42, 22]. This makes differential

flatness-based planners and controllers suitable for the curation of an expert dataset for a few goal

states.

More advanced trajectory planning and control methods solve a constrained non-linear program to

obtain either obtain an optimal trajectory plan [57], control commands [74, 34], or time segments

between waypoints [16]. These methods optimize over non-linear quadrotor dynamics models with

complex non-linear constraints for specific navigation or tracking tasks. For instance, Romero et

al. [57] optimize for a sequence of waypoints to track a fixed trajectory. Sun et al.[74] optimize for

control outputs to track fixed agile trajectories and Foehn et al. [16] optimize for the time between

trajectory segments indexed by waypoints that the quadrotor is supposed to visit. These methods

can be computationally heavy and thereby curating an expert dataset can be computationally

expensive using optimization-based methods.

The third class of methods involves searching either over a fixed discretization of the control inputs

[36], sampled control inputs [10], or fixed discretization of states [37], or states that are optimally

dispersed [26, 27]. Algorithms like A* [61] can be used to search over these control primitive tress

or planning graphs or RRT* [83] can be used to build and search over planning graphs in primitive

space to compose trajectories to goal states from a given initial state. However, search and sampling-

based methods are often restricted to fixed time intervals or fixed states. Hence, curating an expert

dataset from sampling-based methods can prohibit the learning of good quality skills.

34

3.4. Method

In this section, we will outline the specifics of the skill-learning pipeline for aerial vehicles. Skills in

the form of goal-reaching policies are distilled through expert data and we first outline the choice of

expert. Second, we outline the distillation process of how we learn a single goal-conditioned policy

from the expert data. Additionally, we also outline a practical algorithm to plan a sequence of

goals using the goal-conditioned policy distilled from expert data. The planner uses learned value

functions distilled from the expert data to plan intermediate goals and value-based disagreement to

eliminate goal candidates on which the value functions haven’t been trained.

3.4.1. Data Collection

We first curate a dataset offline D for the aerial vehicle which starts at the origin with no velocity

and hover orientation. This aerial vehicle is tasked to reach a dataset of 250 desired goals ρD(g)

within a 1m to 2m position box, with random velocities up to 2.5 m/s range and accelerations

between 5 m/s2 across all three dimensions. Given the initial conditions and the final conditions,

we construct a hierarchical differential flatness-based trajectory planner that computes the minimum

time needed to reach the desired goal without violating the constraints imposed on the velocities

and accelerations and computes the desired smooth polynomial trajectory to reach the desired goal.

Trajectory planning

Following the work [42, 22], we leverage the differential flatness property of quadrotors to plan a

trajectory to a specified goal in a flat space. The flat outputs of the quadrotor are p and Ψ which

correspond to the positions and yaws of the aerial vehicle. We can leverage the derivatives of these

flat outputs to compute the net thrust and desired angular velocities for the quadrotor.

The trajectory planner for data generation for skill learning minimizes jerk as opposed to snap as

done in [42]. This is done by parameterizing the trajectory as a 5th (jerk) order polynomial in

time in flat space assuming we have access to how long each trajectory would last. The planner

in [42] computes the polynomial coefficients through a quadratic program (QP) where additional

linear constraints in the form of obstacles, or desired accelerations can be embedded. For our data

generation, we plan a single polynomial spline to reach the desired goal state with the desired

35

Figure 3.2: Visualization of dataset compiled for the quadrotor. A dataset of 250 desired goals
ρD(g) within a 1m to 2m position box, with random velocities up to 2.5 m/srange and accelerations
between 5 m/s2. Reference trajectories are planned and we plot the resulting trajectories of the
aerial vehicle while tracking the reference trajectory using the controller.

acceleration to be capped at 5 m/s2. This is to ensure we have good-quality trajectories by not

saturating the controller.

However, unlike [42] which pre-specifies the time needed for each polynomial segment, we also

optimize the time required to reach the specified goal. Hence, we devise a search-based optimizer to

compute the minimal time for a trajectory plan optimized by the lower-level QP without violating

any constraints. We run a binary search on the time variable starting from a fixed 4s range. If

the optimizer finds a valid solution, we decrease the time needed and recompute a solution. If the

optimizer doesn’t find a valid solution, we increase the time and solve the QP optimization. This

is done till the time range reduces to 0.02s. The algorithm is outlined in Alg. 1

36

Controller

We use the non-linear geometric controller proposed by [42] to track the given reference trajectory

from the planner given above. Here, the geometric controller computes the feed-forward desired

thrusts based on the desired acceleration profile along the optimized trajectory polynomial using

a PD controller. The desired thrust acts from the center of mass along the aerial vehicle’s body

frame zb axis. Note that the quadrotor must be oriented such that the desired thrust produces

the necessary acceleration. Hence, the desired moments to control the attitude of the aerial vehicle

are computed analogously to [42] to correct for orientation errors through a PD controller. This

attitude control loop converges at a much higher frequency than the desired acceleration by setting

the gains following [42].

The exact parameters of the planner and the controller can be referenced in the attached codebase.

The visualization of the collected expert dataset is presented in 3.2.

Algorithm 1 Computing minimum time single polynomial reference trajectories to specified goals
from an initial state
1: Initialize:

Goal state g, initial state s0, tmin, tmax, amax max acceleration, amin min
acceleration and threshold

2: while tmax − tmin ≥ δ do
3: Set x0 = s0, xf = g and t = tmax+tmin

2
4: Set initial trajectory coefficients p = 0
5: Set Linear constraints C second order derivative of polynomial trajectory to acceleration

constraints amax and amin
6: Compute valid optimal trajectory coefficients with min-jerk optimization [42] with initial-

ization of coefficients as p, constraints C, initial state x0, final state xf and time t
7: if Optimization times out then
8: Set tmin = t
9: else

10: Set tmax = t
11: end if
12: end while

37

3.4.2. Distilling expert data into a single goal conditioned policies

We outline the pre-training phase for learning the goal-conditioned locomotion skills. We train the

goal-conditioned policy that maps state observations and goals in the form of control actions. We

detail the corresponding state, goals, and action spaces for the pre-training phase. We then leverage

the goal-conditioned variant of TD3-BC for offline reinforcement learning to train goal-conditioned

control policies on a sparse reward state.

State, Goals, Actions, and Rewards

The state is represented by position, velocity, orientation, and body rates. The goals for the aerial

vehicle are represented by position, velocity, and orientation. Given that the quadrotor is transla-

tionally invariant and is navigating in free space, the state and the goals for the aerial vehicle are

made relative to its absolute position in space. Hence, the position vector for the state is always 0.

We specify the orientation for both the state and the goals as rotation matrices in the global coor-

dinate frame. Furthermore, the velocities and body rates are also specified in the global coordinate

frame. Note that we don’t have body rate vectors specified as goals as this was observed to result

in poor-quality expert data.

Many action spaces have been proposed for quadrotor control [28] such as Linear Velocities and

Yaw rate (LV), Collective Thrust and Body Rate (CTBR),and Single Rotor Thrusts(SRT). As

control policies in the form of CTBR were been shown to be stable to train, and robust to dynamics

mismatches and controller delays, we choose this particular abstraction of the action space for

our application. The CTBR action space commands the aerial vehicle body thrusts and angular

velocities. This action space computes the thrust commands for each propeller using an internal

PD controller.

The reward functions in a simple binary single indicating whether the desired goal has been reached

i.e.

rg(st, at, g) = 1 (goal reached)

The criterion for reaching the goal is the proximity of the aerial vehicle to its goal along all the

38

position, velocity, and orientation goal dimensionalities. Hence, the reward is received if the dis-

tances are smaller than a small number ϵ i.e ||st+1 − g|| ≤ ϵ. We use the following conditions for

the position, orientation and velocity dimensionality of the goals ϵp = 0.15, ϵr = 0.15, ϵv = 0.35.

Policy Learning

The policy objective is to maximize the cumulative goal-conditioned reward introduced in Eq 1.1.

However, unlike online GCRL we don’t have access to the trajectories that would be generated

by the goal-directed agent. Hence, we command the agent with goals drawn from the dataset

ρD(g) instead of ρ(g)(See Sec. 1.2.4). We leverage offline reinforcement learning, more specifically

GCSL [19], that optimizes the behavioral goal-conditioned policy π(a|s, g). Compared to other

goal-conditioned offline RL methods [91, 39], TD3BC has much lesser complexity and fewer number

of hyperparameters. While TD3BC [17] is observed to have better performance on high-quality

expert data on standard RL benchmark tasks, we observe that GCSL exhibits better performance

for policy learning.

The policy is optimized using the following cost function.

π∗ = argmax
π

Es,a∼D,g∼ρD,ag(g)

[
(π(s, g)− a)2

]
(3.1)

Since the goal-conditioned reward is sparsely obtained only on reaching the goal, this would result in

slow policy convergence. Hence we also relabel the desired goals from the expert dataset ρD(g) with

goals achieved by the expert for the same trajectories in hindsight to alleviate the sparse reward

signal problem. More specifically, we relabel g ∼ ρD(g) with the goals achieved by the expert

gag ∼ ρD(.|g) when commanded with the desired goal g. No additional expert data is collected and

the relabelling occurs with future achieved goals only over a single trajectory that reaches a goal g

in ρD(g).

An additional advantage of this offline relabelling scheme is that this permits the policy to learn

to reach goals in the desired goal distribution g ∈ ρD(g) but also the intermediary goals that the

expert achieves. The full algorithm is outlined in Alg 2.

39

Value Learning

The Q network is learned in standard TD3 style to prevent the Q networks from overestimating

the returns on in-distribution actions since the maximum goal-conditioned reward is clipped at 1.

We use five state action critic networks parametrized by ϕj in contrast to TD3 where two critic

networks are trained. Additionally, we maintain the target networks parameterized by ϕ′j whose

weight updates are temporally delayed. These target networks are used the compute the state action

critics at the future state whereby the action is sampled from the behavioral policy learned through

GCSL. These targets are clipped targets to lie between 0 and 1 given that there is a sparse reward

for reaching a goal to prevent the overestimation of the state action utilities. The TD3 style state

action value loss is given as follows.

Es,a,s′∼D,g∼ρD,ag(g)

[
clip

(
r(s, a, g) + γ min

i
Ea′∼π(s′,g)

[
Qϕ′j (s

′, a′, g)
])

−Qϕj (s, a, g)

]2
(3.2)

Learning this value network is critical for the planning phase described in the next section.

Algorithm 2 Learning the goal conditioned policy
1: Initialize:

Buffer B = {τ}Ni=1 = {{sji , a
j
i , r

j
i , gi, ag

j
i s
j+1
i }Tj=1}Ni=1, policy parameters θ,

critic parameters ϕj and critic target parameters ϕ′j , discount factor γ ,
relabel proportion δ, M epochs , target weight update ratio β

2: for step = 1 to M do
3: Sample Batch of transitions B = {sji , a

j
i , r

j
i , gi, ag

j
i s
j+1
i } for some j ∈ [1, T] and i ∈ [1, N]

4: Relabel gi with agki for some j such that k < T and k > j with probability δ
5: Train θ with policy loss in Eq. 3.1
6: Train each critic network ϕi with gradient of loss in Eq 3.2
7: Update ϕ′i = (1− β) ∗ ϕ+ β ∗ ϕ′i
8: end for

40

3.4.3. Planning with Goal conditioned policy

Given a test goal g which lies beyond the distribution of the goals that the aerial vehicle was trained

for, the objective of the planner is to plan a vector sequence of n intermediate goals g = [gi, i ∈ n]

to reach g. The objective function is thereby given as follows:

g∗ = max
gi∈ρD,ag(g)

E
sg1∼p

π(.|.,g1)(sg1 |s0,g1)
sg2∼p

π(.|.,g2)(sf |sg1 ,g2)...
sgn∼pπ(.|.,gn)(sf |sgn−1 ,gn)

[
pπ(.|sgn ,g)(st+ = sg|sgn , g)

]
(3.3)

Here each goal gi+1 achievable through gi using the distilled goal-conditioned controller π(.|sgi , gi+1)

and this induces a trajectory τ i+1 which is conditioned on the goal gi+1. Here pπ(.|.,gi)(sf =

sgi |sgi−1 , gi) is the discounted state occupancy measure [76, 14] i.e of the goal conditioned pol-

icy and sg is the terminal state of the policy when commanded with the goal g. The discounted

state occupancy is given as pπ(.|.,gi)(sf = sgi |sgi−1 , gi) = (1− γ)
∑∞

t=0 γ
tp
π(.|.,gi)
t (sf = sg).

The optimization objective can be expanded with the discounted state visitations as follows:

g∗ = max
gi∈ρD,ag(g)

∫ ∫
...

∫ [
pπ(.|sgn ,g)(st+ = sg|sgn , g) pπ(.|.,g1)(sg1 |s0, g1)

pπ(.|.,g2)(sf |sg1 , g2)... pπ(.|.,gn)(sf |sgn−1 , gn)dsg1dsg2 ..dsgn (3.4)

Leveraging the equivalence between the discounted state distribution of the goal-conditioned policy

and the goal-conditioned state action critic from [14] under the assumption of the goal reaching

reward, the optimization can be written as:

g∗ = max
gi∈ρD,ag(g)

∫ ∫
...

∫
Q(sgn , π(.|sgn , g), g) Q(s0, π(.|s0, g1), g1)

Q(sg1 , π(.|sg1 , g2), g2)... Q(sgn−1 , π(.|sgn−1 , gn), gn)dsg1dsg2 ..dsgn (3.5)

41

3.4.4. Simplifying the planning objective

Solving the optimization problem directly is intractable due to the presence of an integral over the

terminal state occupancy distributions of the individual goal-conditioned policies. Furthermore,

optimizing the objective in Eq 3.6 is infeasible as it assumes complete data coverage to evaluate

the integral accurately. Since the skills are distilled from offline data, the optimization objective

with critics trained on insufficient data coverage over state goal pairs would be biased and can be

overly optimistic. Second, we assume that we have a well-behaved policy such that terminal state

distribution conditioned on a single goal is Dirac delta. Note that since we learn 5 critic networks,

we use the disagreement between these 5 critics to be pessimistic with respect to the uncertain state

goal pairs. Disagreement is a standard objective for exploring uncovered skills or goals in many skill

learning and goal-conditioned RL works [43, 49, 5]. Hence, we propose an alternative objective to

optimize for intermediate goals as follows:

g∗ = max
gi∈ρD,ag(g)

 1

m

m∑
j=1

(
Qϕj (sgn , π(.|sgn , g), g)

n∏
i

Qϕj (sgi−1 , π(.|sgi−1 , gi), gi)Qϕj (s0, π(.|s0, g1), g1)

)

−α

(
n∑
1

varj
[
Qϕj (sgi−1 , π(.|sgi−1 , gi), gi)

]
+ varj

[
Qϕj (sgn , π(.|sgn , g), g)

]
+ varj

[
Qϕj (s0, π(.|s0, g1), g1)

])]
(3.6)

Here, varj is the variance and m is the number of critics. In the experiments below, we sample a

single intermediate goal g∗ to reach an out-of-distribution goal G from the initial state s0, thereby

the objective is

g∗ = max
g∈ρD,ag(g)

1

m

m∑
j=1

(
Qϕj (sg, π(.|sg, G), G)Qϕj (s0, π(.|s0, g), g)

)
− α

(
varj

[
Qϕj (sg, π(.|sg, G), G)

]
+ varj

[
Qϕj (s0, π(.|s0, g), g)

])
. (3.7)

42

3.5. Experiments

We aim to analyze the learned skills’ quality and usefulness for a planning task by devising experi-

ments to understand the following questions.

1. Are the quality of the skills sensitive to the choice of the offline RL algorithm used for skill

distillation?

2. Can we plan to reach out-of-distribution goals by chaining the learned goal-conditioned skills?

3.5.1. Algorithm Sensitivity

We evaluate the skills learned by different offline RL algorithms using a fixed dataset that is pro-

cedurally generated using the algorithm outlined in Sec 3.4.1. In this evaluation, we evaluate four

offline RL algorithms that have been adapted to the goal-conditioned counterparts [91]. To ensure

fair and identical evaluation we use the author-specific implementations of the algorithms.

We compare and contrast our GCSL variant with CQL [31], TD3BC[17] and TD3-AWBC inspired

from [91]. Note that for TD3-AWBC we only augment the behavior cloning loss introduced for

policy regularisation [17] with advantage-weighted regression term. For CQL, we refer to the author

specified for the critic regularisation. Across all algorithms, we maintain the standard policy and

critic architectures which are MLPs with 4 layers of sizes (512,2048,2048,512).

Evaluation Tasks

Each algorithm is run for 2 million steps with a batch size of 1048 state action transitions. We run

two different sets of evaluations in parallel. First, we evaluate the learned goal-conditioned policies

from offline data with respect to the desired distribution of goals ρD(g). Here, the quadrotor is

initialized from the origin with 0 velocities and no world frame orientation. Note that the offline

data for the quadrotor is collected by setting goals from ρD(g) as terminal goal states. The first

evaluation occurs every 5000 steps and comprises 25 episodes. Here, the success criterion is the

policy’s ability to efficiently reach the specific desired goals over which the original expert data was

collected from the origin state.

43

Figure 3.3: Skill learning performance of different algorithms over the desired goals ρD(g) over which
the expert data is collected. The aerial vehicle is initialized at the origin.

Second, we also evaluate whether the goal-conditioned policy can reach intermediate achieved goals

by the expert with high success from any initial state along the expert trajectory. More specifically,

we initialize the quadrotor at a state along the expert trajectory for some desired goal and task it

to reach a goal at most 45 actions away along the same expert trajectory.

The second set of evaluations assesses the adaptability of the goal-conditioned policy. Unlike existing

methods for construction motion primitives, which may have fixed durations of time or sampled

states, our evaluation demonstrates the policy’s capability to reach intermediate achieved goals

along the expert trajectory from an initial state. This adaptability is crucial in real-world scenarios,

and by successfully reaching intermediate goals with high success rates, we demonstrate that our

method learns fine-grained goal-conditioned skills. This evaluation occurs every 15000 steps and

consists of 75 episodes. In this scenario, the quadrotor is initialized at different states along the

expert trajectory for some desired goal. 25 of these episodes sample the goals from the original set

44

Figure 3.4: Skill learning performance of different algorithms over a mixture of intermediate achieved
goals and desired goals from different initialization along the expert trajectory

of 250 desired goals using which the expert data was collected. The remaining 50 episodes test the

policy’s adaptability to reach any intermediate goal from a given initial state along the given expert

trajectory data.

The average success rates of the learned goal-conditioned policy are summarised in Table 3.1 over

the policy weights learned from the last 10 epochs. Here, the two tasks Reach Desired and Reach

Intermediate are equivalent to the evaluation tasks mentioned for learning performance. In this

Table 3.1: Performance Comparisons of polices learned by different algorithms on two tasks Reach-
Desired and Reach-Intermediate

Tasks CQL (%) TD3-BC (%) TD3-AWBC (%) GCSL (%)

Reach-Desired 0.00±0.00 85.20±4.29 82.80±7.28 93.2 ±3.78

Reach-Intermediate 0.00±0.00 67.6±2.23 66.8 ±3.52 75.6 ±3.78

45

Figure 3.5: Trajectory visualizations of the goal conditioned policy over the Reach-Desired tasks

case, 250 episodes of tests are conducted for both tasks. We qualitatively visualize some of the

trajectories resulting from the goal-conditioned policy learned through the GCSL policy loss in Fig

3.5.

Finally, we also summarize qualitatively and quantitatively the resulting trajectories obtained by

planning a single intermediary goal and reaching an out-of-distribution goal. This dataset of 250

goals is different from the original desired goals ρD(g) over which the expert data was collected.

Table 3.2: Task performance over a set of 250 out-of-distribution goals with respect to a goal-
conditioned policy with and without the planner

Method Successes (%) Near Successes (%)

With Planner 11.6 29.2

Without Planner 0.00 4.4

46

Figure 3.6: Visualization of successful trajectories where the goal-conditioned policy reaches an out-
of-distribution goal (red) by planning an intermediate goal (green) from the initial state at origin
(orange).

After planning an intermediate goal, the goal-conditioned policy is first tasked with reaching the

intermediate goal in an expected time frame and then tasked to reach the final desired goal once the

intermediate goal is reached. We compare this with the goal-conditioned policy tasked to reach the

final goal directly. We define two metrics, success, and near success. The former metric measures

successful episodes where the aerial vehicle reaches within ϵ bound (in Sec 3.4.2) of the goal. Near

successes refer to episodes where the aerial reaches within 2.5ϵ of the goal.

47

3.6. Conclusion

In conclusion, this chapter explores goal-conditioned learning to acquire continuous state-based

locomotion skills for quadrotors. By distilling expert data comprising lower-level motor thrust

commands or desired thrust and angular velocity commands, we create a goal-conditioned policy

that allows the quadrotor to smoothly navigate towards selected goal states without having exclu-

sively planning reference trajectories. Unlike previous approaches that involve fixed goal states, our

method provides adaptability and flexibility in trajectory planning, enabling the quadrotor to reach

a diverse range of goals efficiently.

The contributions of this chapter are two-fold. Firstly, we present an offline approach to distill a

fundamental set of skills that enable the quadrotor to achieve proximal goals. These skills are later

used in conjunction with a planning module to reach goals that are out of distribution with respect

to the training goals. We highlight that this dedicated planning module which plans an intermediate

goal reduces the gap between trajectory planning and control for aerial vehicles.

Overall, by combining the advantages of data-driven policy learning with the flexibility of dynamic

trajectory planning, our method showcases the potential for closing the gap between trajectory

planning and control for aerial vehicles in challenging real-world scenarios. The results obtained

from the extensive evaluations demonstrate the efficacy and promise of our approach in achieving

high-quality and dynamically feasible trajectories.

Future work can focus on developing more sophisticated planners to plan intermediary goals in

an optimized manner. This can be extended to learning-based planning methods where a neural

network is used to plan intermediate goals. Lastly, the quality of expert data over which the goal-

conditioned policy is distilled from the effects of the generalization capability of the higher-level

planner for general goals in the environment. Future work can focus on autonomously acquiring

such skills.

48

BIBLIOGRAPHY

[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,

Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience

replay. Advances in neural information processing systems, 30, 2017.

[2] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep

reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

[3] Jonathan Binney and Gaurav S Sukhatme. Branch and bound for informative path planning.

In 2012 IEEE international conference on robotics and automation, pages 2147–2154. IEEE,

2012.

[4] Hermann Blum, Silvan Rohrbach, Marija Popovic, Luca Bartolomei, and Roland Siegwart.

Active learning for uav-based semantic mapping, 2019. URL https://arxiv.org/abs/1908.11157.

[5] Víctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giró-i Nieto, and

Jordi Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In

International Conference on Machine Learning, pages 1317–1327. PMLR, 2020.

[6] Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex

Irpan, Benjamin Eysenbach, Ryan Julian, Chelsea Finn, et al. Actionable models: Unsuper-

vised offline reinforcement learning of robotic skills. arXiv preprint arXiv:2104.07749, 2021.

[7] Cédric Colas, Tristan Karch, Olivier Sigaud, and Pierre-Yves Oudeyer. Autotelic agents with

intrinsically motivated goal-conditioned reinforcement learning: a short survey. Journal of

49

https://arxiv.org/abs/1908.11157

Artificial Intelligence Research, 74:1159–1199, 2022.

[8] Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic reinforce-

ment learning via parameterized action primitives. Advances in Neural Information Processing

Systems, 34:21847–21859, 2021.

[9] Todor Davchev, Oleg Sushkov, Jean-Baptiste Regli, Stefan Schaal, Yusuf Aytar, Markus

Wulfmeier, and Jon Scholz. Wish you were here: Hindsight goal selection for long-horizon

dexterous manipulation. arXiv preprint arXiv:2112.00597, 2021.

[10] Mihir Dharmadhikari, Tung Dang, Lukas Solanka, Johannes Loje, Huan Nguyen, Nikhil

Khedekar, and Kostas Alexis. Motion primitives-based path planning for fast and agile explo-

ration using aerial robots. In 2020 IEEE International Conference on Robotics and Automation

(ICRA), pages 179–185, 2020. doi: 10.1109/ICRA40945.2020.9196964.

[11] Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imita-

tion learning. Advances in neural information processing systems, 32, 2019.

[12] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you

need: Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

[13] Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to

achieve goals via recursive classification. arXiv preprint arXiv:2011.08909, 2020.

[14] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive

learning as goal-conditioned reinforcement learning. Advances in Neural Information Processing

Systems, 35:35603–35620, 2022.

50

[15] Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight

experience replay. Advances in neural information processing systems, 32, 2019.

[16] Philipp Foehn, Angel Romero, and Davide Scaramuzza. Time-optimal planning for quadrotor

waypoint flight. Science Robotics, 6(56), jul 2021. doi: 10.1126/scirobotics.abh1221. URL

https://doi.org/10.1126%2Fscirobotics.abh1221.

[17] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.

Advances in neural information processing systems, 34:20132–20145, 2021.

[18] Enric Galceran and Marc Carreras. A survey on coverage path planning for robotics. Robotics

and Autonomous systems, 61(12):1258–1276, 2013.

[19] Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Devin, Benjamin Eysenbach,

and Sergey Levine. Learning to reach goals via iterated supervised learning. arXiv preprint

arXiv:1912.06088, 2019.

[20] Harsh Goel, Laura Jarin Lipschitz, Saurav Agarwal, Sandeep Manjanna, and Vijay Kumar.

Reinforcement learning for agile active target sensing with a uav, 2022.

[21] Danijar Hafner, Kuang-Huei Lee, Ian Fischer, and Pieter Abbeel. Deep hierarchical planning

from pixels. arXiv preprint arXiv:2206.04114, 2022.

[22] Zhichao Han, Zhepei Wang, Neng Pan, Yi Lin, Chao Xu, and Fei Gao. Fast-racing: An

open-source strong baseline for se(3) planning in autonomous drone racing, 2021.

[23] Geoffrey A. Hollinger and Gaurav S. Sukhatme. Sampling-based robotic information gathering

algorithms. The International Journal of Robotics Research, 33(9):1271–1287, 2014.

51

https://doi.org/10.1126%2Fscirobotics.abh1221

[24] Geoffrey A Hollinger, Brendan Englot, Franz S Hover, Urbashi Mitra, and Gaurav S Sukhatme.

Active planning for underwater inspection and the benefit of adaptivity. The International

Journal of Robotics Research, 32(1):3–18, 2013. doi: 10.1177/0278364912467485. URL https:

//doi.org/10.1177/0278364912467485.

[25] Edward S Hu, Richard Chang, Oleh Rybkin, and Dinesh Jayaraman. Planning goals for ex-

ploration. arXiv preprint arXiv:2303.13002, 2023.

[26] Laura Jarin-Lipschitz, James Paulos, Raymond Bjorkman, and Vijay Kumar. Dispersion-

minimizing motion primitives for search-based motion planning. In 2021 IEEE International

Conference on Robotics and Automation (ICRA), pages 12625–12631. IEEE, 2021.

[27] Laura Jarin-Lipschitz, Xu Liu, Yuezhan Tao, and Vijay Kumar. Experiments in adaptive

replanning for fast autonomous flight in forests. In 2022 International Conference on Robotics

and Automation (ICRA), pages 8185–8191, 2022. doi: 10.1109/ICRA46639.2022.9812235.

[28] Elia Kaufmann, Leonard Bauersfeld, and Davide Scaramuzza. A benchmark comparison of

learned control policies for agile quadrotor flight. In 2022 International Conference on Robotics

and Automation (ICRA), pages 10504–10510. IEEE, 2022.

[29] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit

q-learning. arXiv preprint arXiv:2110.06169, 2021.

[30] Andreas Krause. Optimizing Sensing: Theory and Applications. PhD thesis, Carnegie Mellon

University, Pittsburgh, PA, USA, 2008.

[31] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for

offline reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–

52

https://doi.org/10.1177/0278364912467485
https://doi.org/10.1177/0278364912467485

1191, 2020.

[32] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in deep reinforcement

learning: A survey. Information Fusion, 2022.

[33] Gaston Lenczner, Adrien Chan-Hon-Tong, Bertrand Le Saux, Nicola Luminari, and Guy

Le Besnerais. Dial: Deep interactive and active learning for semantic segmentation in re-

mote sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, 15:3376–3389, 2022. doi: 10.1109/JSTARS.2022.3166551.

[34] Guanrui Li, Alex Tunchez, and Giuseppe Loianno. Learning model predictive control for

quadrotors. In 2022 International Conference on Robotics and Automation (ICRA), pages

5872–5878. IEEE, 2022.

[35] Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-conditioned reinforcement learning:

Problems and solutions. arXiv preprint arXiv:2201.08299, 2022.

[36] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar. Search-based motion planning

for quadrotors using linear quadratic minimum time control. In 2017 IEEE/RSJ international

conference on intelligent robots and systems (IROS), pages 2872–2879. IEEE, 2017.

[37] Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar. Search-based motion planning

for aggressive flight in se (3). IEEE Robotics and Automation Letters, 3(3):2439–2446, 2018.

[38] Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine,

and Pierre Sermanet. Learning latent plans from play. In Conference on robot learning, pages

1113–1132. PMLR, 2020.

53

[39] Jason Yecheng Ma, Jason Yan, Dinesh Jayaraman, and Osbert Bastani. Offline goal-conditioned

reinforcement learning via f -advantage regression. Advances in Neural Information Processing

Systems, 35:310–323, 2022.

[40] Ajay Mandlekar, Danfei Xu, Roberto Martín-Martín, Silvio Savarese, and Li Fei-Fei. Learn-

ing to generalize across long-horizon tasks from human demonstrations. arXiv preprint

arXiv:2003.06085, 2020.

[41] Ajith Anil Meera, Marija Popović, Alexander Millane, and Roland Siegwart. Obstacle-aware

adaptive informative path planning for uav-based target search. In International Conference

on Robotics and Automation (ICRA), pages 718–724, 2019.

[42] Daniel Mellinger. Trajectory generation and control for quadrotors. University of Pennsylvania,

2012.

[43] Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Dis-

covering and achieving goals via world models. Advances in Neural Information Processing

Systems, 34:24379–24391, 2021.

[44] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,

Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-

ment learning. In International conference on machine learning, pages 1928–1937. PMLR,

2016.

[45] Brady Moon, Satrajit Chatterjee, and Sebastian Scherer. Tigris: An informed sampling-based

algorithm for informative path planning. arXiv preprint arXiv:2203.12830, 2022.

[46] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical

54

reinforcement learning. Advances in neural information processing systems, 31, 2018.

[47] Farzad Niroui, Kaicheng Zhang, Zendai Kashino, and Goldie Nejat. Deep reinforcement learn-

ing robot for search and rescue applications: Exploration in unknown cluttered environments.

IEEE Robotics and Automation Letters, 4(2):610–617, 2019.

[48] Mohammad Nabi Omidvar and Xiaodong Li. A comparative study of cma-es on large scale

global optimisation. In Australasian Joint Conference on Artificial Intelligence, pages 303–312.

Springer, 2010.

[49] Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagree-

ment. In International conference on machine learning, pages 5062–5071. PMLR, 2019.

[50] Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. Ase: Large-scale

reusable adversarial skill embeddings for physically simulated characters. ACM Transactions

On Graphics (TOG), 41(4):1–17, 2022.

[51] Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain

exploration for long horizon multi-goal reinforcement learning. In International Conference on

Machine Learning, pages 7750–7761. PMLR, 2020.

[52] Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey

Levine. Skew-fit: State-covering self-supervised reinforcement learning. arXiv preprint

arXiv:1903.03698, 2019.

[53] Marija Popović, Gregory Hitz, Juan Nieto, Inkyu Sa, Roland Siegwart, and Enric Galceran.

Online informative path planning for active classification using UAVs. In IEEE International

Conference on Robotics and Automation (ICRA), pages 5753–5758, 2017.

55

https://doi.org/10.1109/ICRA.2017.7989676

[54] Marija Popović, Teresa Vidal-Calleja, Jen Jen Chung, Juan Nieto, and Roland Siegwart. In-

formative path planning for active field mapping under localization uncertainty. In IEEE

International Conference on Robotics and Automation (ICRA), pages 10751–10757, 2020.

[55] Doina Precup. Temporal abstraction in reinforcement learning. University of Massachusetts

Amherst, 2000.

[56] Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng. Exploration via hindsight

goal generation. Advances in Neural Information Processing Systems, 32, 2019.

[57] Angel Romero, Sihao Sun, Philipp Foehn, and Davide Scaramuzza. Model predictive contouring

control for time-optimal quadrotor flight. IEEE Transactions on Robotics, 38(6):3340–3356,

2022. doi: 10.1109/TRO.2022.3173711.

[58] Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard.

Latent plans for task-agnostic offline reinforcement learning. In Conference on Robot Learning,

pages 1838–1849. PMLR, 2023.

[59] Reuven Y Rubinstein. Optimization of computer simulation models with rare events. European

Journal of Operational Research, 99(1):89–112, 1997.

[60] Julius Rückin, Liren Jin, and Marija Popović. Adaptive informative path planning using deep

reinforcement learning for uav-based active sensing. In International Conference on Robotics

and Automation (ICRA), pages 4473–4479, 2022.

[61] Stuart J Russell. Artificial intelligence a modern approach. Pearson Education, Inc., 2010.

[62] Julius Rückin, Liren Jin, Federico Magistri, Cyrill Stachniss, and Marija Popović. Informative

56

path planning for active learning in aerial semantic mapping, 2022. URL https://arxiv.org/

abs/2203.01652.

[63] Inkyu Sa, Marija Popović, Raghav Khanna, Zetao Chen, Philipp Lottes, Frank Liebisch, Juan

Nieto, Cyrill Stachniss, Achim Walter, and Roland Siegwart. Weedmap: A large-scale seman-

tic weed mapping framework using aerial multispectral imaging and deep neural network for

precision farming. Remote Sensing, 10(9), 2018. ISSN 2072-4292. doi: 10.3390/rs10091423.

URL https://www.mdpi.com/2072-4292/10/9/1423.

[64] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approx-

imators. In International conference on machine learning, pages 1312–1320. PMLR, 2015.

[65] Lukas Schmid, Michael Pantic, Raghav Khanna, Lionel Ott, Roland Siegwart, and Juan Ni-

eto. An efficient sampling-based method for online informative path planning in unknown

environments. IEEE Robotics and Automation Letters, 5(2):1500–1507, 2020.

[66] Tanmay Shankar, Shubham Tulsiani, Lerrel Pinto, and Abhinav Gupta. Discovering motor

programs by recomposing demonstrations. In International Conference on Learning Represen-

tations, 2020.

[67] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-

aware unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

[68] Mohit Sharma, Jacky Liang, Jialiang Zhao, Alex LaGrassa, and Oliver Kroemer. Learning

to compose hierarchical object-centric controllers for robotic manipulation. arXiv preprint

arXiv:2011.04627, 2020.

[69] Lucy Xiaoyang Shi, Joseph J Lim, and Youngwoon Lee. Skill-based model-based reinforcement

57

https://arxiv.org/abs/2203.01652
https://arxiv.org/abs/2203.01652
https://www.mdpi.com/2072-4292/10/9/1423

learning. arXiv preprint arXiv:2207.07560, 2022.

[70] Amarjeet Singh, Andreas Krause, and William J. Kaiser. Nonmyopic adaptive informative

path planning for multiple robots. In Proceedings of the 21st International Joint Conference

on Artificial Intelligence, IJCAI’09, page 1843–1850, San Francisco, CA, USA, 2009. Morgan

Kaufmann Publishers Inc.

[71] Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Par-

rot: Data-driven behavioral priors for reinforcement learning. arXiv preprint arXiv:2011.10024,

2020.

[72] Felix Stache, Jonas Westheider, Federico Magistri, Cyrill Stachniss, and Marija Popović. Adap-

tive path planning for uavs for multi-resolution semantic segmentation. Robotics and Au-

tonomous Systems, 159:104288, 2023. ISSN 0921-8890. doi: https://doi.org/10.1016/j.robot.

2022.104288. URL https://www.sciencedirect.com/science/article/pii/S0921889022001774.

[73] Junghun Suh, Kyunghoon Cho, and Songhwai Oh. Efficient graph-based informative path

planning using cross entropy. In 2016 IEEE 55th Conference on Decision and Control (CDC),

pages 5894–5899, 2016. doi: 10.1109/CDC.2016.7799176.

[74] Sihao Sun, Angel Romero, Philipp Foehn, Elia Kaufmann, and Davide Scaramuzza. A compar-

ative study of nonlinear mpc and differential-flatness-based control for quadrotor agile flight.

IEEE Transactions on Robotics, 38(6):3357–3373, 2022.

[75] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,

2018.

[76] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning. MIT press

58

https://www.sciencedirect.com/science/article/pii/S0921889022001774

Cambridge, 1998.

[77] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A

framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):

181–211, 1999.

[78] Daniel Tanneberg, Kai Ploeger, Elmar Rueckert, and Jan Peters. Skid raw: Skill discovery

from raw trajectories. IEEE Robotics and Automation Letters, 6(3):4696–4703, 2021.

[79] Mehrdad Tavassoli, Sunny Katyara, Maria Pozzi, Nikhil Deshpande, Darwin G Caldwell, and

Domenico Prattichizzo. Learning skills from demonstrations: A trend from motion primitives

to experience abstraction. arXiv preprint arXiv:2210.08060, 2022.

[80] Sebastian Thrun. Learning occupancy grids with forward models. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, volume 3, pages 1676–1681, 2001.

[81] Alberto Viseras and Ricardo Garcia. Deepig: Multi-robot information gathering with deep

reinforcement learning. IEEE Robotics and Automation Letters, 4(3):3059–3066, 2019.

[82] Kelen CT Vivaldini, Thiago H Martinelli, Vitor C Guizilini, Jefferson R Souza, Matheus D

Oliveira, Fabio T Ramos, and Denis F Wolf. Uav route planning for active disease classification.

Autonomous robots, 43(5):1137–1153, 2019.

[83] Dustin J Webb and Jur Van Den Berg. Kinodynamic rrt*: Asymptotically optimal motion

planning for robots with linear dynamics. In 2013 IEEE international conference on robotics

and automation, pages 5054–5061. IEEE, 2013.

[84] William Whitney, Rajat Agarwal, Kyunghyun Cho, and Abhinav Gupta. Dynamics-aware

59

embeddings. arXiv preprint arXiv:1908.09357, 2019.

[85] Thomas Wiedemann, Cosmin Vlaicu, Josip Josifovski, and Alberto Viseras. Robotic informa-

tion gathering with reinforcement learning assisted by domain knowledge: an application to

gas source localization. IEEE Access, 9:13159–13172, 2021.

[86] Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral

control using covariance variable importance sampling. arXiv preprint arXiv:1509.01149, 2015.

[87] Kevin Xie, Homanga Bharadhwaj, Danijar Hafner, Animesh Garg, and Florian Shkurti. Latent

skill planning for exploration and transfer. arXiv preprint arXiv:2011.13897, 2020.

[88] Haoran Xu, Li Jiang, Li Jianxiong, and Xianyuan Zhan. A policy-guided imitation approach

for offline reinforcement learning. Advances in Neural Information Processing Systems, 35:

4085–4098, 2022.

[89] Rui Yang, Meng Fang, Lei Han, Yali Du, Feng Luo, and Xiu Li. Mher: Model-based hindsight

experience replay. arXiv preprint arXiv:2107.00306, 2021.

[90] Rui Yang, Yiming Lu, Wenzhe Li, Hao Sun, Meng Fang, Yali Du, Xiu Li, Lei Han, and Chongjie

Zhang. Rethinking goal-conditioned supervised learning and its connection to offline rl. arXiv

preprint arXiv:2202.04478, 2022.

[91] Wenyan Yang, Huiling Wang, Dingding Cai, Joni Pajarinen, and Joni-Kristen Kämäräinen.

Swapped goal-conditioned offline reinforcement learning. arXiv preprint arXiv:2302.08865,

2023.

[92] Andrii Zadaianchuk, Georg Martius, and Fanny Yang. Self-supervised reinforcement learning

60

with independently controllable subgoals. In Conference on Robot Learning, pages 384–394.

PMLR, 2022.

61

	ACKNOWLEDGEMENT
	ABSTRACT
	LIST OF TABLES
	LIST OF ILLUSTRATIONS
	INTRODUCTION
	ADAPTIVE INFORMATIVE PATH PLANNING WITH REINFORCEMENT LEARNING ON MOTION PRIMITIVES
	OFFLINE GOAL CONDITIONED SKILL ACQUISITION FOR QUADROTORS
	BIBLIOGRAPHY

