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SUMMARY 

 

For most search, surveillance and rescue applications in field robotics, robots are 

expected to autonomously explore an unknown environment. The process of 

exploration can be sped up if the robot knows where it’s expected to gain new 

information. Thus, this project proposes a method to estimate the expected 

information gain at a given location in a partial map of the environment.  

Given this distribution of information, this work further proposes a planning 

strategy that evaluates good informative paths for map building purposes. We 

implement two path sampling strategies which are optimised using the Cross-

Entropy method. During path optimisation, we compare the time averaged statistics 

of the robot’s sensor footprint along a path to the information distribution map to 

assess information gain. We demonstrate this algorithm for a single turtlebot on 

various partial maps and assess its merits. 

With multiple robots sharing their perceptions to build a common map of the 

environment, exploration can be speeded up. In addition, decentralising the path 

planning process for map building makes the robot team robust to single agent 

failure. We identify that inferring of the path plan of neighbouring robots is crucial 

to decentralising multi agent trajectory planning for exploration and mapping and 

thus, propose a path estimation method based on particle filters.  
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Chapter 1  Introduction 
 

1.1    Background and Objective 

 

Autonomous mobile robots have evolved over the past 2 decades and have the 

potential to change the way humans live and work. These robots can be made to 

work autonomously in a diverse set of environments ranging from offices and 

households to disaster sites and tough industrial environments. For autonomous 

robots to be fully functional, robots would have to maintain an internal description 

or a map of the environment to safely navigate through while carrying out the tasks 

they are designed for.  

     The process of map building of an environment to extract relevant features is an 

integral process for many robotics applications. Conventionally, these maps are 

represented as discrete occupancy grids composed of cells that represent the 

presence of an obstacle at a given location in the environment. In most of these 

applications, an autonomous robot would have no prior information of the 

environment it is placed within.  Therefore, such a robot is initially tasked to explore 

the environment to map features such as obstacles, walls and empty space.  

Thus, the primary objective of this project is to propose a new exploration strategy 

for building a map of an unknown environment. In the following section, we 

provide a summary and review some of the exploration algorithms in literature.  

 



1.2    Literature Review 

 

Over the past two decades various methods have been proposed for efficient 

exploration of the environment using a single robot to build such a map of the 

environment [1]. Most of these evaluate regions that transition from free space to 

unknown and unexplored space [1]. These regions are termed as frontiers and a 

robot is tasked to explore such frontiers to gain more information from the 

environment to further build the map. These methods employ a greedy search-based 

strategy where these frontiers are assigned a cost based on proximity [1]. Although 

quite simple and effective, the closest frontier approach does not account for new 

information that the robot is expected to gain at a frontier. Thus, exploration 

strategies that greedily explored frontiers that maximised information gain were 

proposed [2]. Information gain is defined as the decrease in uncertainty between 

successive measurements and the objective of this exploration strategy is to 

decrease the entropy of the map over time. However, this exploration strategy 

would result in repetitive and wasteful traversal of the robot to reach such frontiers 

with highest information gain [3].  

    Thus, for efficient exploration of the environment an autonomous robot is 

required to maximise information gain while minimising the travelling distance. 

Exploration strategies using Partially Observed Markov Decision Process 

(POMDP) [4] were develop for the robot exploration problem [5][6]. In this 

framework the selection of a frontier for exploration by the robot is modelled as an 

action, and the planning algorithm evaluates a set of actions that maximise a reward 

function. This reward function accounts for expected information gain, total 



travelling length, total time, and total number of scans taken [7]. The robot learns a 

policy for exploration through reinforcement learning to select actions that 

maximises this reward function over a time horizon [8] [9]. Moreover, these 

methods also account for imperfections in sensor measurements and uncertainty in 

the robot’s current observations. However, these approaches are computationally 

intractable, where for realistic exploration applications the problem of evaluating 

an optimal policy takes up to minutes or hours to solve [7]. It is crucial for a robot 

to evaluate a path to explore the environment in the least amount of time possible 

as we expect the robots to re-plan their paths whenever new information is acquired 

from a frontier which further expands the map. Thus, based on the literature review 

three crucial research questions are identified with respect to the robot exploration.  

1) How do we represent the amount of expected new information gain in the 

map of the environment with respect to the robot’s position? 

2) What is a good path for a robot to take to maximise the amount of 

information it gains from the environment while minimising travelling 

distance?  

3) How to compute this path in an acceptable amount of time? 

    Furthermore, multiple robots can speed up the exploration where these robots 

can share their perceptions and build a common map of the environment. This 

global map can be constructed in a centralized way or independently in each robot 

in a distributed and more robust manner. Frontier-based exploration strategies have 

been extended to coordinate multiple robots for exploration [10]. Assignment of 

regions for exploration by Voronoi partitioning of the known map [11] and optimal 



frontier assignment using Hungarian methods [11] to robots in a team were two 

such initial centralised planning approaches. To increase system robustness 

decentralised approaches such as decision theoretic based task distribution 

frameworks using market-based bidding models [12] [13] were introduced. 

However, these approaches don’t account for maximising information gain while 

minimising total travelling distance for the robots. Furthermore, these planning 

algorithms are typically restricted to short time horizons. In order to plan good paths 

for exploration using multiple robots, stochastic control methods using potential 

fields [14] and sampling-based motion planning approach using multi agent 

probabilistic roadmaps [15] were introduced. Furthermore, Singh et al [16] propose 

a method to evaluate optimal information gathering paths using multiple robots for 

sensor-based coverage purposes. However, these proposed algorithms rely on a 

centralised system to plan paths for individual robots which is not robust to failure. 

Thus, an open research question is identified with respect to the optimal robot 

exploration problem using multiple robots. 

4) How to decentralise path planning to coordinate robots in a team to explore 

the environment?  

    We address these research questions in this project. The scope and organisation 

of the project is presented in the next section. 

 

 



1.3    Scope and Organisation 

The report is divided across 4 chapters. Chapter 2 explains the simulation 

environment and robot architecture used and can be skipped if the reader is familiar 

with designing turtlebot architectures and simulations on ROS and Gazebo. Chapter 

3 and Chapter 4 present the bulk of the work done in this project. Chapter 3 

describes a method to characterise the amount of new information that can be 

gained from the environment. Chapter 4 introduces the motion planning algorithm 

that maximises information gain. 

    In chapter 2 we begin to describe a simulation architecture developed on ROS 

and Gazebo for the robot used for the exploration problem.  A simple differential 

drive turtlebot with a 3D camera that has a 120-degree horizontal field of view and 

range of 5 m is used for mapping. The chapter describes the robot’s architecture 

developed in ROS to test the motion planning algorithms described in Chapter 4.  

   Chapter 3 describes a method used to evaluate information dense regions from 

the partial map of the environment. As a robot can retrieve certain amount of new 

information due the range of its sensors, we attempt to represent information gain 

that a robot can obtain with respect to its position on a known partial map of the 

environment. Naturally, frontiers to unexplored space are information dense as 

compared to other locations in the map. We use these frontiers to capture to obtain 

an information density map to evaluate good paths for a robot to execute.  

    We present a new sampling-based motion planning scheme in Chapter 4 that 

formulates a path for a single robot which maximises information gain from the 

surroundings. The planning algorithm accounts for the robot’s sensor footprint 



along a planned trajectory and incorporates the robot’s physical footprint in the 

environment to avoid obstacles.  Furthermore, a mathematical framework is also 

proposed that can be used to completely decentralise motion planning for 

exploration.  

    Chapter 5 presents a summary of the work conducted and outlines the scope for 

future work. 

1.4    Contributions 

 

The contributions of the project can be summarised as follows: 

• A multi-robot simulator on ROS developed for easy deployment of 

algorithms to real physical robots 

• Description of a method to represent maximum amount of new information 

that can be gained from the partial map of the environment as a function of 

the robot’s position in the environment. 

• Description of a motion planning algorithm that plans a good path to gain 

maximum amount of new information from the environment. 

• A theoretical framework to decentralise the motion planning scheme to 

coordinate multiple robots for exploration and map building purposes.  

 

 

 



Chapter 2  Overview of the Simulator and Software 

 

2.1    Introduction 

 

This chapter will briefly describe the simulation software and architecture 

developed on Gazebo using ROS as the middleware to test the developed motion 

planning algorithm in Chapter 4. A turtlebot is used as the test robot for the 

simulation study and an architecture for the robot was developed on ROS for the 

robot to perform navigation and mapping related tasks. This chapter would also 

briefly describe this architecture. Furthermore, we would give an overall picture on 

the workflow of the simulation software so that the reader could use it for future 

work. We show the results of testing the robot’s architecture to develop a map of 

the environment and address a few limitations of the simulator. 

-  

2.2    Turtlebot Architecture Description 

A turtlebot is a low cost and easy to develop robotic platform (shown in Fig 2.1) 

with open source software which allows easy deployment of algorithms developed 

for various autonomous mobile robotics tasks. The turtlebot operates on Robot 

Operating System (ROS) middleware. The turtlebot is simulated on the Gazebo 

environment by providing a URDF(Universal Robot Description File) format of the 

robot to the Gazebo package in ROS. 

    In this project, the turtlebot in the simulation uses a Kinect sensor with a field of 

view of 120 degree and a range of 5 m. The point cloud information is converted a 



laser scan using ROS’s depthimage_to_laserscan package for Simultaneous 

Localisation and Mapping (SLAM). Optionally, the simulation  provides a URDF 

format file that simulates Hokuyo’s laser scanner to provide laser scans directly for 

SLAM.   

 

Fig 2.1 Turtlebot 

    Mapping of the environment is performed using Gmapping which produces an 

occupancy grid map whose values range from 0 – 100 to indicate the probability 

that a certain grid point is an obstacle. Thus, 0 indicates free space and 100 indicates 

an obstacle. Unknown and unexplored spaces are indicated as -1. Moreover, the 

Gmapping package was modified to provide the Shannon’s entropy [17] of each 

cell of the occupancy grid map for evaluating information content each cell could 

provide. For unknown spaces which are assigned as -1, Shannon’s entropy would 

be undefined and thus, for these regions we assume that probability of occupancy 

is 0.5. This assumption is valid as for unknown spaces, a grid cell on the map can 

either be an obstacle or free space with equal probability. 

    For global and local navigation, the Move Base ROS package is employed. 

Global navigation on Movebase employs A* search to plan a path given an end 



destination.. The local navigation algorithm in Movebase is crucial for the project 

as it controls the robot to move along a trajectory that is planned by a global planner. 

Movebase employs the Dynamic Window Approach to control the robot along a 

planned trajectory. Furthermore, the robot trajectories from this global planner are 

smoothened by the local navigation planner for non-jerky control of the robot. 

    The exact robot architecture (graph of ROS nodes and topics) on ROS can be 

found in Appendix A.  

2.3    Simulation Setup 

 

The simulation is rendered using ROS middleware and Gazebo. The instruction set 

to deploy and run the simulation is provided in Appendix B. 

    The simulator was furthermore enhanced to support easy deployment of a team 

of turtlebots with similar capabilities that can be individually controlled. This can 

be easily achieved by declaring multiple robots within the launch file 

multi_robot_sim/launch/include/robots.xml. More details can be found in 

Appendix C. 

    The simulator supports merging of maps from many robots into a common map. 

This is achieved through the map_merge package in ROS. The simulator 

automatically detects the various robots used in the simulation (specified with a 

well-defined robot namespace) and merges their maps in real time.   

 

 

 



2.4    Results 

 

An environment to map using autonomous robots is built on Gazebo. Fig 2.2.a 

shows the setup of the environment.  

   

Fig 2.2 a) Environment with single turtlebot b) Map of the environment 

 

 2.5    Limitations 

 

Some of the limitations of the simulator can be summarised as follows: 

1. The simulator does not model communication within the robots for the 

creating a combined map of the environment. The design of the simulator is 

based on the assumption that there is a centralised system to merge maps 

from different robots and that all robots possess unrestricted communicate 

with this centralised system. 

 



2. It is assumed that any robot in the simulator is aware of the exact location 

of the other robot. The simulator does not provide any means to a robot to 

evaluate the positions of other robots in its vicinity. 

Addressing these limitations would improve the real-time fidelity of the simulator 

and would ease deployment and verification of future work on physical turtlebots. 

 2.6    Conclusions 

 

This chapter has provided an overview of the simulation environment used to test 

the algorithms implemented in Chapter 3 and Chapter 4. Thus, significant 

engineering effort was invested into developing a reliable robot simulator in the 

first 8 to 10 weeks of the project. A ROS Architecture was developed for a turtlebot 

in the simulator for mapping and navigation functionalities.  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3  Characterising New Information   

 

3.1    Introduction 

 

This section briefly describes the algorithm used to evaluate the density of expected 

new information from the partial map of the environment known to the robot. 

Typically, robots would gain maximum amount of new information from frontiers 

to unknown space in this known partial map. Moreover, expected information 

content for map building would vary with properties of frontier’s such as their size 

and no. of unknown cells in the vicinity of the frontier. Thus, this chapter proposes 

a method to capture such properties of a frontier and aims to provide a 

computationally tractable framework to build an information density map based on 

a known partial map. This information density map reflects the robot’s expected 

information gain at a certain position in the known partial map.  

3.2    Theory and Algorithm 

 

To obtain this exact information map, ideally the robot would have to compute the 

number of unknown cell with in the range of the robot’s sensors at each cell in the 

partial map.  However, this method is computationally expensive especially when 

maps cover larger areas or have higher map resolutions. Thus, we attempt to provide 

a computationally tractable reliable estimate of the expected information gains 

based on the following assumptions.  

• A partial map of the environment is known to the robot over which the 

information density map is computed.  



• The map is ternary where -1 represents unknown space, 0 represents free 

space and 1 represents an obstacle. 

• Robot possesses omnidirectional sensors. 

The key idea employed is expected information gain from the frontiers in the given 

map reduces with distance between the robot and a frontier. For simplicity, we 

capture this distribution of information around the frontier using a Gaussian 

function centred at centroid of the frontier. Thus, the given information map would 

be a Gaussian mixture model of the form described below over the identified 

frontiers in the map. 

 𝐼(𝑥; 𝑣) = ∑
𝑤𝑘

2𝜋√∈𝑘

𝑒
1
2

(𝑥−𝜇𝑘)𝑇∈𝑘
−1(𝑥−𝜇𝑘)

𝐾

𝑘=1

 (2.1) 

 ∑ 𝑤𝑘 = 1

𝐾

𝑘=1

 (2.2) 

x represent a coordinate (𝑥, 𝑦) on the map, and 𝑣 = (𝜇1, 𝜖1, 𝜇2,, 𝜖2 … 𝜇𝑘, 𝜖𝑘) are 

parameters that correspond to the means 𝜇𝑘 and covariances 𝜀𝑘. The means are the 

centroids of the computed frontiers and the covariances correspond to the spread of 

the gaussian function. This spread is required to capture useful properties of the 

frontiers such as it’s size and shape. For instance, a larger frontier would have a 

larger spread. Thus, the first order moment of a frontier is calculated with respect 

to it’s centroid as shown in Eq 3. This first order moment captures the spatial 

distribution of all cells in a frontier i with respect to it’s centroid. 



 

 𝜇𝑖 = ∑(𝑥𝑘𝑖 − 𝑥𝑐𝑖)

𝐾

𝑘=1

(𝑥𝑘𝑖 − 𝑥𝑐𝑖)𝑇 (2.3) 

 where xki is the coordinate of a frontier cell and xci is the coordinate of the centroid 

Furthermore, each gaussian component computed for a frontier is weighted based 

on the expected new information content from the frontier. This is evaluated by 

computing the number of unknown cells in the range of the robot’s sensor when the 

robot is placed at the centroid of the frontier. The weights are normalised to 1 prior 

to calculating the information map. The complete algorithm is summarised in  

Algorithm 3.1. 

 

 

 



3.3    Results  

 

The algorithm is tested over 2 maps to produce information density maps as shown 

in Fig 3.1 Fig 3.1 is the map obtained at the beginning of the exploration process 

where the robot performs an inplace rotation at the origin. Fig 3.1 b) is the map 

obtained at some unspecified time in the middle of the exploration process where 

there are fewer frontiers left to explore.  In the information density map, darker 

regions correspond to higher expected information gain. 

          

        

Fig 3.1 Information Distribution Map Results a,c) 2 partial maps of Environment 

b,d) Corresponding Information Distribution Maps 



From Fig 3.1, it can be observed that the algorithm captures the information content 

over the partial map which is very intuitive. The following observations are made : 

• Darker regions on the information map are closely concentrated around 

those frontiers to large unexplored spaces. Furthermore, these information 

maps accurately capture the relative importance of frontiers that are 

expected to provide more information as frontier are weighted based on their 

expected information gains. 

• Larger frontiers may not necessarily provide new information. This is 

accurately reflected in Fig 3.1b. The large frontiers at the top left corner in 

Fig 3.1b have minimal information content compared to other regions.   

 

3.4    Limitations 

 

Some of the limitations of this approach can be summarises as follows: 

1. The algorithm computes information gain at a frontier by calculating the 

number of all unknown cells in the range of the robot’s sensor when placed 

at the centroid of the frontier. This computation includes unknown cells that 

are occluded by obstacles. Thus, this gives an inflated estimate of the 

information content at the frontier. As a result, in certain edge cases as 

shown in Fig 3.2, regions around frontiers close to large obstacles that 

encapsulate a large number of unknown cells appear to be darker than those 

regions around information dense frontiers at the boundaries of the map.   



2. The computation of information gain at a frontier is based on the assumption 

that the robot’s sensors are omnidirectional. For robot sensor’s such as 

RGBD cameras which have horizontal field of views, information content 

would be maximum at certain orientations of the robot. The algorithm fails 

to capture this relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2 Edge Case where information map is inaccurate (Notice darker regions 

towards the centre as algorithm includes information from cells occluded by 

obstacle) 

 

 

 

 

 



3.5    Future Work 

 

There is scope for improving the information maps computed by the proposed 

method. A more reliable estimate of the expected information gain at the frontiers 

by eliminating unknown cells occluded by obstacles at frontiers.  This can be 

achieved by incorporating ray-casting algorithms to identify observable unknown 

cells. Raycasting algorithms can also be used for evaluating the orientation of the 

robot that captures maximum amount of information from the frontier. 

3.6    Conclusions 

 

In summary, this chapter has provided a computationally tractable algorithm to 

evaluate the distribution of information gain across the partial map of the 

environment for map building. This information map is crucial for the evaluating a 

good path for a robot for map building. The chapter has addressed the limitations 

of the algorithm and has outlined the scope of future work to improve the 

performance of the map. 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4   Path Planning for Efficient Exploration 

 

4.1    Introduction 

In chapter 3 we proposed a method which allows the robot to infer and represent 

information content in a partial map. In this chapter, we address the problem of 

finding a good path for the robot to execute which maximises information gain to 

build the map of the environment.  This problem is different from classical path 

planning algorithms in the sense that there is no goal for the robot to move to. Thus, 

the robot is supposed to select a good information rich trajectory from the set of all 

possible trajectories that the robot can execute over the given partial map to build a 

map of the environment. This is a combinatorial problem and is generally classified 

as a NP – Hard problem as no exact and efficient solutions are known. Therefore, 

good solutions to these classes of problems are stochastically sampled and 

optimised using techniques such as Bayesian Optimisation[19], and simulated 

annealing [20]. This chapter uses the Cross Entropy (CE) optimisation method to 

optimise good informative paths (see section 4.2.3). 

    Furthermore, it is intuitive that the robot spends more time in regions with high 

expected information gains to build good maps. In other words, the robot should 

spend more time sensing regions with high information gain while a robot moves 

along a path. More formally, the idea is to plan a trajectory over a sufficiently long-

time horizon such that distribution of average time spent on gathering information 

from a region –  while the robot moves along this trajectory –  is similar to 

distribution of information in the partial map of the environment.  Thus, we use the 



principles of ergodic theory for dynamical systems[21] as shown in Section 4.2.1 

to evaluate trajectories for robots to explore the environment. 

      Thus, this chapter proposes a motion planning algorithm that incorporates the 

above metric based on ergodicity in a sampling-based cross entropy trajectory 

optimisation framework for robot exploration. The key idea is that we try to model 

the search of a good path for the robot from a set of all possible paths as a low 

probability event.  Thus, possible paths for a robot to take are sampled. A multi-

level optimisation scheme improves these sampled paths at a given level by 

assessing the best paths.  The best paths are used to sample paths for successive 

levels to produce better paths. The process is repeated until all samples drawn 

during a given iteration are identical. This would indicate that no further 

improvement can be made to the paths that are sampled.   

    We also present two different approaches for sampling feasible paths in sections 

4.3 and 4.4 for a robot to safely execute in the environment based on two 

parametrisations of the trajectory. The cross-entropy optimisation framework is 

deployed over both the trajectory sampling schemes for evaluating informative 

paths. The merits of both sampling processes are analysed in section 4.5. 

     Since the process of mapping the environment is faster with multiple robots, we 

also attempt to propose a mathematical framework for a team of robots to plan a 

trajectory to build the map of the environment in a decentralised manner in section 

4.6. This is important as decentralised systems are robust to failure of a single agent 

in the team.  



4.2    Theory 

This section provides a brief overview of the principles behind ergodic theory and 

cross entropy optimisation method. 

4.2.1 Ergodic Theory  

Ergodic theory is a statistical study of time dynamical systems averaged over time. 

Thus, for an agent with a sensor, the time average statistics quantifies the amount 

of time spent on gathering information through the robot’s sensor while moving 

along a trajectory.  

Following the developments made in [22], the ergodicity of robot’s sensor 

footprints is evaluated as follows:  

 
𝛤(𝑥) = ∫ 𝑓(𝑥 − 𝛾(𝜏))𝑑𝜏

𝑇

0

 
(4.1) 

Where 

𝑓(𝑥 − 𝛾(𝜏)) = {
1 𝑖𝑓|𝑥 − 𝛾(𝜏)| ≤ 𝑟 ∧ 𝜃𝜏 − 𝛽 ≤ 𝑎𝑟𝑐𝑡𝑎𝑛 (

(𝑥−𝛾(𝜏))
2

(𝑥−𝛾(𝜏))
1

) ≤ 𝜃𝜏 + 𝛽

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}    (4.2) 

where 𝛾(𝜏)  = (𝑞𝑥(𝜏), 𝑞𝑦(𝜏)) and 𝜃𝜏 = 𝑞𝜃(𝜏) denote the position and orientation 

of the robot at time τ respectively. r and β denote the range and horizontal field of 

view of the robot. 

The robot’s sensor footprint can be visualised in Fig 4.1.  

 



 

Fig 4.1 Sensor Footprint of Robot with Horizontal FOV of 120 and range 5m 

A system exhibits ergodic behaviour with respect to a desired distribution over its 

state if its time averaged statistics is similar to the desired distribution. In this case, 

the distribution of the average time spent on gathering new information of a location 

should be similar to the information density map. ‘ 

Mathew and Mezic[21] proposes a metric based on fourier transformation for 

evaluating ergodicity for the trajectories of dynamic systems with respect to a 

distribution. Fourier coefficients are differentiable and thus useful for continuous 

systems. However, for sampling-based motion planning algorithms there is no need 

for this differentiability. There are many other measures available to compare two 

distributions. Here, we compare the similarity of the two distributions using KL 

Divergence – one is obtained from evaluating the time averaged statistics of the 

robot’s sensor along a trajectory and the other is the information map I(x) obtained 

from the developments made in Chapter 3. KL Divergence evaluates the relative 

entropy between two measures and is not symmetric. 

 
𝐷(𝛤|𝐼) = ∫ 𝛤(𝑥)𝑙𝑜𝑔

𝛤(𝑥)

𝐼(𝑥)
𝑑𝑥 

(4.3) 



4.2.2 Trajectory Parametrisations  

 

    A trajectory for a robot 𝜋(𝑡) represents the control and state tuple (𝑢(𝑡), 𝑞(𝑡)) 

of the robot at a time t. More formally a trajectory is a mapping 𝜋: [0, 𝑡𝑓] → 𝑈 × 𝑄 

over a set of controls 𝑈 and states 𝑄. 

By incorporating the evolving kinematics and dynamics of the robot, a trajectory 

can be parametrized in terms of independent vectors 𝑧 ∈ 𝑍,  where 𝑍 ⊂ 𝑅𝑛𝑧is the 

parameter space. The parameter z can either be discrete controls 𝑢(𝑡) at a time t  or 

discrete states 𝑞(𝑡). Based on this definition, there is a unique mapping from the 

parameter space 𝑅𝑛𝑧 to the space of trajectories which is given by 𝜑: 𝑍 → 𝜋. In 

other words, for some trajectory in its respective domain, there is a vector in the 

parameter space such that  

 
𝜋 = 𝜑(𝑧) 

(4.4) 

The control state tuples of a trajectory can be written as π(t) = φ(z,t). The cost J(z) 

for a given trajectory parameter z can be rewritten as : 

 
𝐽(𝑧) = ∫ 𝐶(𝜑(𝑧, 𝑡))𝑑𝑡

𝑇

0

 
(4.5) 

 

Thus, our primary objective is to evaluate an optimal trajectory parameter 𝑧 ∗ 

𝑡hat minimised the above cost function.  

 
𝑧∗ = 𝑎𝑟𝑔𝑧𝑚𝑖𝑛 ∫ 𝐶(𝜑(𝑧, 𝑡))𝑑𝑡

𝑇

0

 
(4.6) 

 



4.2.3 Cross Entropy Optimisation  

Cross-Entropy(CE) Optimisation [23] process is treated as an estimation of 

probabilities of rare events. The rare event in this problem is drawing a parameter z 

whose cost is very close to that of the optimal parameter 𝑧∗ that minimises 𝐽(𝑧). 

This is achieved through the concept of importance sampling [24]. Importance 

sampling is a technique to estimate the properties of a specific distribution by 

drawing samples from another easily computable distribution such as a Gaussian.  

For motion planning using CE Optimisation, feasible trajectory parameters are 

sampled from a probability prior such as a Gaussian over the domain 𝑅𝑛𝑧 , that 

satisfy actuator and physical constraints (such as obstacles). The costs of these 

trajectory parameters are evaluated using the metric 𝐽(𝑧). However, as the cost of 

the optimal parameter is generally unknown, we employ a multi-level optimisation 

scheme where at each level, the trajectory parameter samples which have the lowest 

costs (top 1% to 10%) are used to compute a new refined distribution for sampling 

at subsequent levels. Eventually, over a few iterations the distribution from which 

trajectory parameters are sampled converge to a Dirac Delta distribution. A Dirac 

Delta distribution indicates that the samples drawn are identical and an optimal 

parameter has been found. The motion planning solution is thus the parameter 

which has the lowest cost from these identical samples. 

    More formally, we assume that trajectory parameter samples for the algorithm 

are drawn from a Gaussian Mixture Model(GMM) which is defined as follows: 

 
𝑝(𝑧; 𝑣) = ∑

𝑤𝑘

2𝜋√∈𝑘

𝑒
1
2

(𝑧−𝜇𝑘)𝑇∈𝑘
−1(𝑧−𝜇𝑘)

𝐾

𝑘=1

 
(4.7) 

 



Where and 𝑣 = (𝜇1, 𝜖1, 𝜇2,, 𝜖2 … 𝜇𝑘, 𝜖𝑘) are the gaussian parameters that define this 

Gaussian Mixture Model and z is a trajectory parameter.  These parameter samples 

are used to generate a trajectory using kinematic and dynamic constraints. These 

trajectory samples are then optimised using the CE method. This optimisation is 

summarised in the following steps: 

1) Initialise gaussian parameter 𝑣0 that defines the sub space over which the 

trajectory parameters are sampled from. 

2) Sample 𝑧1, 𝑧2, . . 𝑧𝑛𝑝(𝑧; 𝑣𝑖) and evaluate costs 𝐽(𝑧1), 𝐽(𝑧2), ..., , 𝐽(𝑧𝑛) 

3) Compute trajectories whose costs are in top 𝜌𝑡ℎ quantile. 𝜌 could be any 

value between 1% and 10%.  We call these trajectories an elite set of 

trajectories 

4) Compute new Gaussian parameters that 𝑣𝑖+1 from the elite set of trajectories 

using expectation maximisation.  

5) Repeat step 2 until the samples correspond to a Dirac distribution. 

Covariance matrices in the Gaussian Mixture Model parameters would have 

very small covariance values. 

6) Assign trajectory parameter that has lowest cost as optimal solution 

 

Do note that if the gaussian prior used for sampling does not provide a uniform 

coverage of the trajectory samples over the environment, the solution would 

converge to a local minimum. Ideally, with good coverage the optimisation 

algorithm would identify a global maxima.  

We present two sampling strategies for trajectories in the following section. The 

generated trajectories are optimised by this framework. 



 4.3    Approach 1: Sampling Control Primitives 

 

4.3.1 Trajectory Parametrisation and Generation 

The algorithm assumes the dynamics of commonly available differential drive 

robots such as a turtle bot. The dynamics of the robot can be defined as follows. 

       𝑥́ = 𝑢𝑣𝑐𝑜𝑠(𝜃) 𝑦́ = 𝑢𝑣𝑠𝑖𝑛(𝜃) 𝜃́ = 𝑢𝜃 (4.8) 

Where (𝑢𝑣, 𝑢𝜃) are control inputs for linear and angular velocity respectively. 

For this algorithm, a trajectory is parameterised using a sequence of n control 

primitives 𝑧 = (𝑢𝑣1
, 𝑢𝜃1

, 𝑢𝑣2
, 𝑢𝜃2

, . . . 𝑢𝑣𝑛
, 𝑢𝜃𝑛

) where each control primitive 

(𝑢𝑣𝑖
, 𝑢𝜃𝑖

) acts over a time interval 𝛥𝑡𝑖 . For simplicity this time interval is assumed 

to be a constant 𝜏. Given a robot’s starting location 𝑞𝑥(0), 𝑞𝑦(0), 𝑞𝜃(0) , a sequence 

of control primitive generates a trajectory for the robot to take. Thus, for a given 

primitive (𝑢𝑣𝑖
, 𝑢𝜃𝑖

)acting over a time interval [𝑡𝑖−1 , 𝑡𝑖] , where 𝑡𝑖 − 𝑡𝑖−1 = 𝜏, the 

trajectory spline 𝜑(𝑧, 𝑡) = (𝑢𝑣, 𝑢𝜃 , 𝑞𝑥, 𝑞𝑦, 𝑞𝜃) for a time 𝑡 ∈ [𝑡𝑖−1 , 𝑡𝑖]  is given by  

 𝑢𝑣(𝑡) = 𝑢𝑣𝑖
 (4.9) 

 𝑢𝜃(𝑡) = 𝑢𝜃𝑖
 (4.10) 

 𝑞𝜃(𝑡) = 𝑞𝜃(𝑡𝑖−1) + 𝑢𝜃𝑖
𝛥𝑡𝑖 (4.11) 

 𝑞𝑥(𝑡) = {
𝑞𝑥(𝑡𝑖−1) +

𝑢𝑣𝑖

𝑢𝜃𝑖

(𝑠𝑖𝑛𝑞𝜃(𝑡) − 𝑠𝑖𝑛𝑞𝜃(𝑡𝑖−1))          𝑖𝑓𝑢𝜃𝑖
≠ 0

𝑞𝑥(𝑡𝑖−1) + 𝑢𝑣𝑖
𝛥𝑡𝑖𝑐𝑜𝑠𝑞𝜃(𝑡)                                   𝑖𝑓𝑢𝜃𝑖

= 0
 (4.12) 

 

 

𝑞𝑦(𝑡) = {
𝑞𝑦(𝑡𝑖−1) +

𝑢𝑣𝑖

𝑢𝜃𝑖

(𝑐𝑜𝑠𝑞𝜃(𝑡) − 𝑐𝑜𝑠𝑞𝜃(𝑡𝑖−1))       𝑖𝑓 𝑢𝜃𝑖
≠ 0

𝑞𝑦(𝑡𝑖−1) + 𝑢𝑣𝑖
𝛥𝑡𝑖𝑠𝑖𝑛𝑞𝜃(𝑡)                                  𝑖𝑓 𝑢𝜃𝑖

= 0
 

(4.13) 

where 𝛥𝑡𝑖 = 𝑡 − 𝑡𝑖−1 



Do note that the condition imposed for 𝑞𝑥, 𝑞𝑦 based on 𝑢𝜃𝑖
arises from parametrising 

this trajectory spline as an arc.  

4.3.2 Trajectory Costs  

 

The following considerations were made to evaluate a trajectory generated using 

the sequence of control primitives. 

1) Proximity of robot’s position with respect to obstacles in the environment.  

2) Ergodicity of the robot’s sensor footprint with respect to the distribution 

of information in the environment 

3) Length of the total trajectory 

For consideration 1, we use the costmap 𝑀: 𝛾 → 𝑅 generated by move_base where 

𝛾(𝑡) = (𝑞𝑥(𝑡), 𝑞𝑦(𝑡)) is the position of the robot. This costmap represents the 

difficulty of traversing a trajectory by checking its proximity to obstacles for 

collision avoidance. For consideration 2, we use the principles of ergodic theory 

which is introduced in Section 4.2.1.  

Thus, the total cost of the trajectory encoded by the parameter z and starting position 

𝑞(0) = (𝑞𝑥(0), 𝑞𝑦(0), 𝑞𝜃(0)) 

 𝐽(𝑧) = 𝑤1 ∫ 𝑀(𝛾(𝑡))𝑑𝑡
𝑡𝑛

0

+ 𝑤2𝐷(𝛤(𝑥) | 𝐼(𝑥)) + 𝑤3||𝑞|| (4.14) 

 

 

We apply the cross entropy optimisation framework as described in Section 4.2 for 

the computation of the optimal parameter z* given the initial robot conditions 

𝑞𝑥(0), 𝑞𝑦(0), 𝑞𝜃(0). Note that the length of the trajectory also includes it’s angular 

component. 



4.3.3 Numerical Results 

The performance of the algorithm is demonstrated over two partial maps.   

The map in Fig 4.2a) is obtained when the robot performs an in-place rotation 

during the beginning of exploration. The trajectory is composed from a sequence 

of 3 control primitives. 𝑢𝑣𝑖
 components of the control primitives which indicates 

the speed of the robot is set to a constant of 0.8 m/s. Each primitive acts for a 

constant time of 5 seconds and the robot initiates its trajectory from the origin. Thus, 

the planning process occurs over a time horizon of 15 seconds. The optimal 

trajectory is shown in Fig 4.2.a and the corresponding information map and time 

averaged statistics of the robots sensor footprint are shown in Fig 4.2.b and Fig 

4.2.c.  

Fig 4.2 Motion Planning Results on Initial Map a) Map with Optimal Trajectory b) 

Information Distribution Map c) Ergodic Sensor Footprint of Robot 



The map in Fig 4.3.a is obtained when the robot maps out a large section of the 

environment. The trajectory is composed from a sequence of 5 control primitives 

where the 𝑢𝑣𝑖
 components of the control primitives which indicate the speed of the 

robot is set to a constant of 1.0 m/s. Each primitive acts for a constant time of 5 

seconds and the robot initiates its motion plan from the origin. Thus, the planning 

process occurs over a time horizon of 25 seconds. The optimal trajectory is shown 

in Fig 4.3.a and the corresponding information map and ergodicity of sensor 

footprint of the robot are shown in Fig 4.3.b and Fig 4.3.c. Notice how the robot 

moves towards the regions with highest information gain while covering those 

regions with intermediate information gain. 

 

Fig 4.3 Motion Planning Results on a Larger Map a) Map with Optimal Trajectory 

b) Information Distribution Map c) Ergodic Sensor Footprint of Robot 

 

The optimisation process stops when the sampled trajectories are identical. The 

convergence of the samples can be verified in Appendix D. Appendix D also plots 

the convergence plots of the costs.  

 



4.3.4 Limitations  

A primary issue with this approach is the computation time required for sampling. 

While sampling for control primitives, the algorithm rejects trajectories that do not 

satisfy obstacle constraints and the control primitives are resampled until a feasible 

trajectory is found. Due to this, the computation time for motion planning process 

increases.  

Furthermore, as the size of the map increases (Fig 4.4), generated trajectories are 

not effectively distributed across the map of the environment especially with the 

presence of features such as narrow passages. Good coverage of the environment is 

required for generating an optimal path using the cross-entropy optimisation 

algorithm. Without good coverage, the algorithm would either converge to a local 

maximum or not converge at all. Thus, parameters crucial to the planning algorithm 

such as number of primitives, and planning horizon need to be tuned manually.  In 

this case as shown in Fig 4.4, convergence is observed to a local optimal solution 

(see Appendix E).   

 

Fig 4.4 Sampled Trajectories over a larger map with narrow passage with 8 

control primitives and planning horizon of 60 seconds 



4.4    Approach 2: Sampling from Probabilistic Roadmaps 

 

4.4.1 Roadmaps  

A probabilistic roadmap (PRM) [25] is a motion planning strategy to determine a 

path between a robot’s starting and goal configurations. The primary idea behind 

probabilistic roadmaps is to sample random collision free configurations or states 

of the robot from the known map of the environment and connect these 

configurations/states to neighbouring configurations/states. The result is a graph of 

connected configurations/states on which classical graphical search algorithms can 

be applied for robot path planning.  

Since no goal configuration is known to us, we use these roadmaps to generate 

trajectories for a robot.  Furthermore, using roadmaps is advantageous as collision 

free trajectories can be generates in lesser amount of time compared to generating 

trajectories from control primitives. Furthermore, roadmap algorithms sample free 

states uniformly and randomly. This is useful for finding optimal paths as seed 

trajectories for the first iteration of the Cross - Entropy Optimisation process will 

be uniformly distributed over the environment.  

In summary, this approach employs a roadmap 𝑅 = {𝑉, 𝐸} which is constructed 

using the PRM algorithm. Roadmap vertices V correspond to collision free vertices 

on the map or 𝑉 =  { (𝑞𝑥, 𝑞𝑦) ∶  (𝑞𝑥, 𝑞𝑦) 𝑖𝑠 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑓𝑟𝑒𝑒 𝑜𝑛 𝑚𝑎𝑝}. Edges are 

connected between two sampled positions if their relative distance is below a 

threshold 𝐷𝑟and the path is collision free. 𝐷𝑟 is determined using actuator 

constraints. 

 



4.4.2 Trajectory Parametrisation and Generation 

For this algorithm, a trajectory is parameterised using a sequence of positions 𝑧 =

(𝑞𝑥1
, 𝑞𝑦1

, 𝑞𝑥3
, 𝑞𝑦2

, . . . 𝑞𝑥𝑛
, 𝑞𝑦𝑛

) where each position primitive 𝛾𝑖 = (𝑞𝑥𝑖
, 𝑞𝑦𝑖

) is 

adjacent to position primitive 𝛾𝑖−1 = (𝑞𝑥𝑖−1
, 𝑞𝑦𝑖−1

)  on the roadmap. Adjacency of 

two positions in the context of the roadmap implies that there is an edge between 

these two positions.  

Thus, we produce position variants using a randomised variant of Depth First 

Search. The algorithm for generating these trajectories is summarised in Algorithm 

4.1. Furthermore, we impose the condition that the robot travels between adjacent 

position primitives (𝛾𝑖, 𝛾𝑖−1) from the time interval [𝑡𝑖−1 , 𝑡𝑖] , where 𝑡𝑖 − 𝑡𝑖−1 = 𝜏. 

Thus, the trajectory spline 𝜑(𝑧, 𝑡) = (𝑢𝑣, 𝑢𝜃 , 𝑞𝑥, 𝑞𝑦, 𝑞𝜃) for a time 𝑡 ∈

[𝑡𝑖−1 , 𝑡𝑖] can be defined as:  

 𝑢𝑣(𝑡) =
| 𝛾𝑖 − 𝛾𝑖−1 |

𝜏
 (4.15) 

 
 

𝑢𝜃(𝑡) = 0 
(4.16) 

 𝑞𝜃(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
(𝛾𝑖 − 𝛾𝑖−1)𝑦

(𝛾𝑖 − 𝛾𝑖−1)𝑥
) (4.17) 

 𝑞𝑥(𝑡) = 𝑞𝑥𝑖
+ 𝑢𝑣 

(𝑡) 𝛥𝑡𝑖𝑐𝑜𝑠𝑞𝜃(𝑡) (4.18) 

 𝑞𝑦(𝑡) = 𝑞𝑦𝑖
+ 𝑢𝑣 

(𝑡)𝛥𝑡𝑖𝑠𝑖𝑛𝑞𝜃(𝑡) (4.19) 

 

 

 

 

 

 

 



 

 

4.4.3 Trajectory Costs 

The cost of a trajectory is evaluated using equation 4.14 as described in Section 

4.3.2. It has been reproduced as follows: 

 
𝐽(𝑧) = 𝑤1 ∫ 𝑀(𝛾(𝑡))𝑑𝑡

𝑡𝑛

0

+ 𝑤2𝐷(𝛤(𝑥) ∨ 𝐼(𝑥)) + 𝑤3||𝑞|| 
(4.14) 

 

 



 

    We apply the cross-entropy optimisation framework as described in Section 4.2 

for the computation of the optimal parameter z*. Intuitively, the cross-entropy 

framework is loosely coupled with the probabilistic roadmap in this algorithm. At 

each stage of the optimisation process, the refinement of trajectory parameters 

corresponds to the assignment of more importance to certain regions on the map 

where the robot is expected to get most information. In other words, the cross-

entropy optimisation framework narrows down the domain, from which the PRM 

algorithm samples collision free states, to smaller specific regions on the map which 

are important for generating good informative paths. Eventually by virtue of 

Algorithm 4.1, similar trajectories are generated once sampling of free 

configurations is confined to very small regions on the map. 

4.4.4 Numerical Results  

 

The motion planning results are obtained on the maps shown in Fig 4.2.a and 4.3.a 

and have been reproduced in Fig 4.5.b and 4.6.b. 

For the first map, a trajectory is composed of a sequence of 5 position primitives 

sampled from the roadmap as shown in Fig 4.5.a using algorithm 4.1. The planning 

horizon is set to 15 seconds, where each primitive is expected to be completed by 

the robot in 3 seconds. The corresponding information map and time averaged 

statistics of sensor footprints are shown in Fig 4.5.c and Fig 4.5 d. 

 



  

  

Fig 4.5 Motion Planning Results on Initial Map a) Roadmap for Sampling b) Map 

with Optimal Trajectory c) Information Distribution Map d) Ergodic Sensor 

Footprint of Robot 

 

For the second map, a trajectory is composed of a sequence of 10 position primitives 

sampled from the roadmap as shown in Fig 4.6.a using algorithm 4.1. The planning 

horizon is set to 25 seconds, where each primitive is expected to be completed by 

the robot in 2.5 seconds. The corresponding information map and time averaged 

statistics of sensor footprints are shown in Fig 4.6.c and Fig 4.6 d. 

 



      

    

Fig 4.6 Motion Planning Results on a Larger Map a) Roadmap for Sampling b) Map 

with Optimal Trajectory c) Information Distribution Map d) Ergodic Sensor 

Footprint of Robot 

 

The curious reader is referred to Appendix F to observe the trajectory convergence 

process. It can be observed that the sampled trajectories are uniformly distributed 

over the environment. 

 

 



4.4.5 Discussions  

 

As observed from Fig 4.5.a and Fig 4.6.a, the roadmaps sample free configurations 

uniformly over the environment. Thus, trajectories generated using algorithm 4.1 

are more uniformly distributed compared to those generated using the approach in 

Section 4.3 (see Appendix F).  Furthermore, as the size of the map increases as 

shown in Fig 4.7; we observe that the generated trajectories effectively cover the 

map of the environment especially in maps with features such as narrow passages. 

(see Appendix G).   

One limitation of this approach is that after a few iterations, generally (3 iterations) 

the costs of the trajectory increases erratically (see Appendix F). As mentioned 

before, the cross-entropy optimisation framework narrows down the domain, from 

which the PRM algorithm samples collision free states, to smaller specific regions 

on the map which are important for generating good informative paths. After a few 

iterations, these specific regions narrow down to multiple points. If an obstacle 

exists between two points, the roadmap algorithm would fail to connect these 

points. This leads to a fragmented roadmap and the trajectories are sampled from a 

partition of the roadmap by virtue of Algorithm 4.1. This explains the increase in 

costs after a few iterations.  

 

 

 

 

 

 



4.5    Performance Comparison 

The merits of both sampling approaches are analysed in this section. Table 4.1 

summarises the costs of the best path produced after the 2 approaches are applied.   

 Sampling using Control Primitives Sampling From RoadMaps 

Maps Total 

Cost 

Ergodicity 

Cost 

Length Time for 

planning 

(s) 

Total 

Cost 

Ergodicity 

Cost 

Length Time for 

planning 

Map 

Fig 

4.2.a 

12.61 9.75 22.62 15.2 14.29 13.15 29.1 24.45 

Map 

Fig 

4.3.a 

12.79 10.73 31.43 24.22 17.1 15.01 41.84 26.54 

Map 

Fig 

4.4  

29.5 27.16 48.56 94.43 27.94 25.37 56.32 27.45 

Table 4.1 Performance Comparisons between two approaches 

 

It is observed that during the beginning of exploration where maps are smaller and 

features such as narrow corridors are less prominent, path sampling using a 

sequence of control primitives results in a better path than using roadmaps. As the 

map gets bigger, better paths are obtained by the latter approach. It is also observed 

that the resulting path from the second approach is much longer as compared to the 

first approach. 

Thus, a hybrid approach to sampling trajectories is recommended where during the 

beginning of the exploration process, control primitives are sampled to generate 

trajectories. As more features are observed in the map, trajectories can be generated 

using roadmaps. 



4.6    Towards Decentralised Exploration 

4.6.1 Introduction 

 

Based on the results of the motion planning approaches in Section 4.3 and Section 

4.4, a robot is expected to move towards regions with high expected information 

gain. With multiple robots and no coordination scheme, robots would crowd 

towards such regions. This behaviour is undesired and thus, a robot should be able 

to adapt its motion plan to move towards another region of high information density 

when it observes another robot moving towards the same region it has initially 

planned for. Therefore, the key insight towards decentralising motion planning that 

would coordinate robots in a team for exploration is this notion of a robot predicting 

the motion plan of another robot in its neighbourhood based on the other robot’s 

prior locations. We try to address this problem in this section. 

The problem of path prediction is regarded here as inferring future positions of 

another robot based on a priori positions. We break the problem down into 2 

sections. Firstly, as a robot’s position evolves by virtue of a kinematics model such 

as (4.8), we first estimate hidden variables such as speed and angular velocity of 

the robot. This estimated velocity is then projected using the kinematics model to 

evaluate future positions of the robot.  

 

 

 

 



4.6.2 Estimation 

More formally, the estimated velocities ( 𝒗∗
1:𝑘) of another robot are those velocities 

that maximise the belief of the robot being at its prior positions 𝒒1:𝑘 and starting 

position 𝒒𝟎 . Note that 𝒗∗(𝑖)  =  (𝑣 ∗𝑥 (𝑖), 𝑣 ∗𝑦 (𝑖)) and 𝒒 (𝑗)  =  (𝑞𝑥(𝑗), 𝑞𝑦(𝑗)). 

Thus, 

 {𝒗∗
1:𝑘}  =  

argmax
𝒗̅1:𝑘

   𝑝 (𝒗̅1:𝑘 | 𝒒𝟎, 𝒒(1: 𝑘))  (4.20) 

   

This estimation problem (4.20) includes two sources of difficulty: long time horizon 

and continuous space.  By exploiting the Markov property of the kinematics model 

where future observations and states to be dependent on the current observation and 

state, we can simplify the estimation problem by evaluating the current velocity 

𝒗 ∗𝒊  that produces observation 𝒒𝑖 based on prior observation 𝒒𝒊−𝟏 . In other words, 

 {𝒗 ∗𝒊  
}  =  

argmax
𝒗̅𝑖

   ∏ 𝑝 (𝒒𝒋 | 𝒗̅𝑗)   𝑝 (𝒗̅𝑗|𝒒𝒋−𝟏)

𝑖

𝑗=1

 (4.21) 

If the state space is discrete, dynamic programming methods such as Viterbi’s 

algorithm [26] can be used to solve this problem. However, since the state space is 

continuous, we need to perform this inference over a continuous state. Thus, an 

approximate inference algorithm such as a particle filter [27] which discretises 

continuous space by sampling particles from valid regions of the state space. In 

other words, the procedure using a particle filter algorithm can be summarised as 

follows: 

 



1) Initialise particles sampled uniformly from the domain of velocities. 

2) Begin loop and set j = 1 

3) Predict future state 𝒒̅𝑗 based on sampled velocity particles 𝒗̅𝒋, using the 

kinematics model 

4) Update likelihood of velocity particles based on proximity of predicted 

future state 𝒒̅𝑗  with respect to 𝒒𝒋 

5) Resample particle velocities based on new obtained likelihood using 

importance sampling 

The use of particle filters to estimate hidden parameters sets using current 

observations has been successfully demonstrated in [28].  

4.6.3 Prediction 

Therefore, after obtaining a reliable estimate of the posterior belief as described in 

(4.20) based on observations made on robot positions, we can now predict where 

the robot is expected to be in future time instances. This is a trivial problem as we 

first sample particle velocities based on the belief distribution using importance 

sampling. This belief distribution has been computed using the particle filter 

algorithm as described before. Future robot positions can be predicted by applying 

the kinematics model over the sampled velocities. Note that the future positions of 

the robot would also be distribution. 

4.6.4 Discussions  

After inferring such future positions, a robot can evaluate which regions is 

neighbouring robot moving towards. The problem now lies in incorporating this 

inference as a metric for planning a new path for a given robot. Future work can be 



conducted on this problem to obtain a fully decentralised motion planning algorithm 

to coordinate exploration effort in robot teams.    

4.7    Future Work 

The scope of future work primarily lies in resolving some of the limitations 

observed in the above-mentioned approaches to planning good informative paths. 

Some of these include: 

• Develop algorithms that tunes parameters for a good initial distribution 

trajectories that are parametrised by sequences of control primitives over 

the environment. 

• Real time verification of map building using the motion planning algorithms 

developed in Section 4.3 and 4.4 on the simulator described in Chapter 2.  

This can be done by implementing a ROS plugin for the motion planning 

algorithm within the navigation stack. 

Based on the concepts developed in Section 4.6, future work can also be scoped on 

developing a decentralised motion planning scheme for multi-robot map building 

applications. Thus, work could be conducted on: 

• Real time verification of trajectory inference on simple frontier-based 

exploration 

• Incorporating inferences on trajectories of neighbouring robots to adjust the 

motion plan for a given robot for decentralised multi-robot exploration. 

 



4.8   Conclusions     

In summary, this chapter has provided two sampling-based motion planning 

algorithms that implement cross entropy optimisation to evaluate a good 

exploration path for a robot to maximise information gain for map building. The 

chapter has addressed the limitations of the algorithms and has outlined the scope 

of future work to improve the performance of these algorithms. Furthermore, this 

chapter has introduced a mathematical framework for a robot to predict and infer 

the trajectories other robots in its vicinity. This framework is useful for coordinating 

exploration in a decentralised manner where a given robot can adjust its motion 

plan in accordance with the inference it makes on motion plans of other robots.    

 

 

 

 

 

 

 

 

 

 

 



Chapter 5  Concluding Remarks 
 

This Chapter presents a summary of the material covered in the preceding Chapters, 

reiterating the main contributions, and discusses some avenues of future work 

5.1   Summary of Contributions 

We began with a comprehensive literature review on the work done on exploration 

using mobile robots and presented some of the open research questions in Chapter 

1. 

 Chapter 2 provided an overview of the simulation environment developed on ROS 

and Gazebo. A turtlebot is used for simulation purposes and an architecture was 

developed for the turtlebot for mapping and navigation purposes. We presented 

some of the limitations of the simulator and scope of future work to improve real 

time fidelity of the simulator for multi-robot mapping applications.  

   Chapter 3 describes a method used to evaluate the distribution of information 

across the partial map of the environment. This chapter presents a method to reliably 

estimate a distribution of expected information gain as a function of the robot’s 

position at a given position.  

    We present a sampling based probabilistic motion planning scheme in Chapter 4 

that formulates a path which maximises information gain from the surroundings 

using the Cross-Entropy Optimisation framework. The planning algorithm 

incorporates a metric to measure the ergodicity of a robot’s sensor footprint along 

a planned trajectory with respect to the information distribution map in Chapter 3.  



This chapter also presents a mathematical framework that can used to coordinate 

exploration using multiple robots in a decentralised manner. 

5.2   Summary of Future Work  

The following are some of the avenues for future work to be conducted: 

1) Modelling communication between robots for improving real time fidelity 

of the simulator. 

2) Modelling localisation of robots in the vicinity of another robot. 

3) Reliably estimating expected information gain at a frontier using ray casting 

algorithms 

4) Automated parameter tuning for good initial coverage of trajectory samples 

parametrised by a sequence of control primitives. 

5) Real time verification of map building with developed simulator by 

integrating navigation stack with motion planning algorithm. 

6) Real time verification of trajectory inference algorithm for decentralised 

motion planning. 

7) Incorporating inferences of trajectories of neighbouring robots to adjust 

motion plan for a given robot in a decentralised manner. 
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Appendix A  ROS Architecture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix B  Command Set for running a simulation 

1. The code for the simulator and project can be found at 

https://github.com/mercury070599/final_year_dissertation. 

2. The following commands should be used to deploy the multi_robot simulator 

roscore 

Launches core functionalities of ROS 

roslaunch multi_robot_sim robots_gazebo_rviz.launch 

Launches the simulation with Gazebo for visualisation and Rviz for sensor logging 

and visualisation, and displaying maps 

roslaunch multi_robot_sim robots_gazebo.launch 

Launches the simulation with Gazebo for visualisation. 

roslaunch multi_robot_sim keyboard_teleop_robot1.launch 

Launches teleoperative controller for robot 1 

roslaunch multi_robot_sim keyboard_teleop_robot2.launch 

Launches teleoperative controller for robot 2 

roslaunch multi_robot_sim keyboard_teleop_robot3.launch 

Launches teleoperative controller for robot 3 
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Appendix C  Deploying multiple robots  

1. Multiple robots can be deployed by modifying the 

multi_robot_sim/launch/include/robots.launch.xml 

2. Add the following code to deploy a robot 

<!-- BEGIN ROBOT 1--> 

  <group ns="robot1"> 
    <arg name="initial_pose_x" value="1" /> 
    <arg name="initial_pose_y" value="0" /> 
    <arg name="initial_pose_z" value="0" /> 
    <arg name="initial_pose_yaw" value="-1.5" /> 
    <param name="map_merge/init_pose_x" value="$(arg 
initial_pose_x) "/> 
    <param name="map_merge/init_pose_y" value="$(arg 
initial_pose_y)"/> 

    <param name="map_merge/init_pose_z" value="$(arg 
initial_pose_z)"/> 

    <param name="map_merge/init_pose_yaw" value="$(arg 
initial_pose_yaw)"/> 
    <!-- <param name="tf_prefix" value="robot1_tf" /> --> 
    <include file="$(find 
multi_robot_sim)/launch/include/robot.launch.xml" > 
      <arg name="initial_pose_x" value="$(arg initial_pose_x)" /> 

      <arg name="initial_pose_y" value="$(arg initial_pose_y)" /> 
      <arg name="initial_pose_z" value="$(arg initial_pose_z)" /> 
      <arg name="initial_pose_yaw" value="$(arg 
initial_pose_yaw)" /> 
      <arg name="robot_name"  value="robot1" /> 
    </include> 
  </group> 
 

3. Set a different namespace for each robot deployed. The namespace can be 

changed by modifying the <group ns> tag. Set different initial positions of the robot. 

. 

 

 

 

 

 

 



Appendix D  Cross Entropy Motion Planning Optimisation  

 

For map described in Fig 4.2.a 

    

      

 

Fig E.1 Trajectory samples at a)1st iteration b)3rd iteration c) 6 th iteration of the 

cross entropy motion planning process for map in Fig 4.2.a  d) cost of best 

trajectory at each iteration 

 

 

 

 



For map described in Fig 4.3.a 

        

     

 

Fig E.2 Trajectory samples at a)1st iteration b)4th iteration c) 5th iteration of the 

cross entropy motion planning process for map in Fig 4.3.a d) cost of best 

trajectory at each iteration 

 

 

 

 

 



Appendix E  Convergence of Motion Planning using Control Primitives on a 

larger map  

For map described in Fig 4.4 

   

 

Fig F.2 Trajectory samples at a)1st iteration b)10th iteration during the cross 

entropy motion planning process for map in Fig 4.4 c) cost of best trajectory 

sample at each iteration 



Appendix F  Trajectory Sampling from RoadMaps of Motion Planning  

For Map in Fig 4.2.a 

  

  

Fig G.1 Trajectory samples at a)1st iteration b)2nd iteration c) 3rd  iteration of the 

cross entropy motion planning process for map in Fig 4.2.a  d) cost of best 

trajectory at each iteration 

 

 

 

 

 

 



For Map in Fig 4.3.a 

    

  

Fig G.2 Trajectory samples at a)1st iteration b)2nd iteration c) 3rd  iteration of the 

cross entropy motion planning process for map in Fig 4.2.a  d) cost of best 

trajectory at each iteration 

 

 

 

 

 

 



Appendix G  Convergence of Motion Planning on Larger Map using 

Roadmap Sampling  

     

 

Fig H.1 Trajectory samples at a)1st iteration b)5th iteration during the cross 

entropy motion planning process for map in Fig 4.4 c) cost of best trajectory 

sample at each iteration 

 

 


