
NEURAL MMO: COLLABORATIVE RESOURCE SHARING FOR MULTIPLE FORAGING AGENTS

HARSH GOEL [HARSHG99@SEAS], GAURAV KUPPA [GAKUPPA@SEAS], ADITYA PRATAP SINGH [ADIPRS@SEAS],

ABSTRACT. Multi-agent robotics planning problems for tasks such as environmental monitoring, search and rescue, and
surveillance are generally NP hard. In this paper we focus on the multi agent foraging task, where a group of agents collect
resources and deposit them at a central depo in a collaborative manner. Existing decentralised solutions to foraging problem
are often rule based and don’t take into account multiple objectives of exploration and exploitation for foraging, or resource
constraints in agents. Our paper’s contributions are to apply a reinforcement learning solution to the multi agent foraging
problem, which gives us the advantage of making a NP-hard foraging problem computationally feasible,decentralised and
scalable to any number of agents under resource constraints.

1. INTRODUCTION

Multi-agent robotics planning problems include solving large-scale tasks such as environmental monitoring, search
and rescue, and surveillance. In this paper, we focus on the multi agent foraging problem where a team of robots aim to
collect resources from the environment and deposit these resources to a central collection spot (Depo or Nest)[1]. For
such problems, multiple agents can interact in either cooperative settings, competitive settings or mixed settings[1].
These planning problems are generally NP-hard and many existing solutions are centralized and grow exponentially in
complexity with the number of agents. Decentralized solutions to these problems cam often be quite sub-optimal as
they rely on rule based approaches from domain based knowledge[2][3]. An effective MAF approach balances the
exploration for new resources with the exploitation of already-discovered ones.

In this paper, agents would be deployed in an environment with food and water as shown in Figure 1 and each
agent will collect and deposit resources while consuming a few resources to survive. This paper aims to investigate the
emergence of behaviour that balances between exploitation of resources for individual survival and the team objective
of depositing resources at a Depo through Reinforcement Learning. Learning for Multi agent systems can be difficult
to stabilise due to non-stationarity[4] in the environment and as such we apply newer techniques in Reinforcement
Learning, specifically Proximal Policy Optimisation (PPO) to train a policy. We design and compare learned policies
over two reward structures for the problem.

2. BACKGROUND

2.1. Reinforcement Learning (RL). A Markov Decision Process (MDP) is characterised by a state of the environment
st ∈ S, an action at ∈ A from a policy π(at|st), transition dynamics st+1 ≈ p(.|st, at) and a corresponding reward
rt for the action at. RL maximises the long term return Rπ

t of and MDP at any time step t under policy π given by∑∞
t̂=t γ

t̂−trt̂. Some algorithms for RL learn a joint mapping Q(SXA) → R that represents the return Rt over all
possible configurations of states and actions(Q-Learning)[5][6], or learning a policy π(at|st) that maximises the long
term reward (REINFORCE)[7] or both (eg. A2C,A3C)[8]. In the latter a value function and policy over a state are
learnt. The value function is used to reduce the variance over the estimated return and by extension over the policy
losses.

2.2. Multi-agent Reinforcement Learning. Reinforcement Learning for multi-agent systems generally optimise a
global objective over a a cooperative game of many agents. In this case each agent i chooses an action ait ∈ Ai and the
action space is a joint space of all actions for all agents A = ×n

i=1Ai. This agent would also share a portion of the
global reward r(s, u). However, the large action space and credit assignment makes centralized RL for multi agent
problems infeasible. Thus, typical approaches to multi-agent reinforcement learning (MARL) include making local
decisions using a locally defined reward structure. This follows the decentralised training and decentralised execution
paradigm where multiple agents are spawned in an environment to sample and learn from individual trajectories
[1][9][10]. Asynchronous methods [8] using actor critic methods are typically common place for training a shared
policy network among agents, however, training can be difficult to stabilise. Recent advancements such as Trust region
methods (TRPO and PPO) [11][12] can be used to stabilise training for multi-agent reinforcement learning problems.

1

2 HARSH GOEL [HARSHG99@SEAS], GAURAV KUPPA [GAKUPPA@SEAS], ADITYA PRATAP SINGH [ADIPRS@SEAS],

3. RELATED WORK

MAF is a widely studied problem for swarm intelligence [1] and involves numerous subtasks such as agent
exploration, path planning and the constant need to balance exploitation and co-operation amongst agents. Rule
based approaches exploit domain knowledge for a small subset of these problems to arrive at sub-optimal decen-
tralised solutions[2][3]. A large body of work applies reinforcement learning to the the multi agent foraging prob-
lem [1][9][13][14][15]. These works typically focus on learning cooperative behaviour to efficiently explore the
environment[1][9], balance the exploration vs exploitation aspect of the environment[14][15], or learn communication
channels to coordinate agents to search the environment for resources[13]. However, these approaches do not take into
account the constraints on agents to perform foraging tasks. Cooperative behaviours can often be influenced when
agents need to prioritise their own health and safety, and this paper aims to learn cooperative behaviour under such
individual agent constraints. While individual agent constraints could be too harsh to learn useful cooperative behaviour,
we introduce automatic resource sharing amongst agents once within a communication range to relax the problem.

4. PROBLEM FORMULATION

4.1. Environment. We set up a two-dimensional, grid-world environment of size 32x32, with randomly placed
resources and obstacles and a single, central nest/Depo. This is based off from OpenAI’s Neural MMO environment[16]
as showm in Figure 1. The 2D environment consists of a table of tiles, where each tile can either be a Forest Tile, Scrub
Tile, Water Tile, Stone Tile and Depo Tile. The Forest tile contains food that are depleted when an agent walks. A scrub
tile provides no resources and is only traversable. Furthermore, depleting a forest tile restores 100% of the food to
the agent that walks over this tile. A Scrub Tile has a 2.5% chance to turn into Forest Tile at each time step. Walking
adjacent to a Water tile restores 100% water to the player and the tile cannot be depleted and is not traversable. A grass
tile is a traversable tile which causes no change in resources. A stone Tile is non traversable. Finally, agents can interact
with a Depo Tile to deposit resources into this tile. Once an agent is on Depo Tile, it would automatically deposit half
of it’s personal resources to the Depo.

FIGURE 1. Visualization of Foraging Environment in Neural MMO. The red box depicts the
observable region for the agent at the center.

4.2. Agent. Each agent (depicted by 3 blue dots in Figure 1) has a maximum capacity for holding resources. Each
agent starts with 10 food and 10 water. Agents can collect more resources up to this max capacity as the agent traverses
the map and forages more resources. Each agent consumes 1 food and 1 water at each time step. If agents have 0
resources, the health of each agent deteriorates over time. Each timestep without food or water takes away 10 health
from a maximum of 100. Health can be restored if the agent has resources above the half the maximum capacity.
Furthermore, agents can deposit its foraged resources to the Depo tile. Agents can chose to enter a Depio tile to deposit
half of their food and water, agents would loose this food and water for their own personal survival. Additionally,
to relax the problem we allow agents to share half their resources amongst each other once they are within two tile
distances from another agent.

4.3. Final Setup. An environment is setup where a team of 16 agents is spawned around a randomnly allocated Depo
Tile. Terrain generation is done using a default octave generator provided by NeuralMMO [16]. An episode is set to
terminate if all agents in the team die.

NEURAL MMO: COLLABORATIVE RESOURCE SHARING FOR MULTIPLE FORAGING AGENTS 3

5. APPROACH

We attempt to break the Foraging problem to a Markov Decision Process with observations, actions and rewards as
described below. We implement an actor critic architecture for training the policy network and use PPO to stabilise the
parallelised training over multiple CPU’s.

5.1. Observation Space. Agents observation are set up to be partially observable with a 15 by 15 field of view ash
shown in 1. Each agent has access to it’s own state - food and water level, health, position and ID (depth of 12). Besides
this, each agent has the same information for the first 100 agents within this field of view. Since we have 16 agents
in the problem, only a maximum of 15 rows of the entity observation model will be filled at any time. Observations
also include a snapshot of the locally observed environment within the the 15x15 field of view centered around an
agent(depth of 4). Each agent has access to the type of tiles (food, water or grass) in said grid and the absolute position
of the tile in the environment. Furthermore each agent also has access to the absolute location and total resources in the
Depo tile regardless of whether the tile is within the field of view of the agent.

5.2. Action Space. Agents can perform 4 actions in the environment to interact with other agents for sharing resource,
forage for food and water and deposit resources. These actions result in a movement in each of the four cardinal
directions in the two dimensional grid world; each results in a one-cell movement that takes one time step to execute.

5.3. Reward Structure. We propose two reward structures that consists of both team and individual rewards for
foraging efficiently in the environment. For both settings agents receive a large death penalty if they die and 0 rewards
if they manage to survive. All agents in the team are rewarded if any single agent manages to deposit resources in the
environment. The agent that deposits the resources gets an additional reward. The team reward and individual reward is
linearly proportional to the number of resources as follows:

rt = λ1Fd + λ2Wd + IiDepo(µ1Fd + µ2Wd)

where Fd Wd are deposited food and water and IiDepo indicates whether the agent is currently on the depo tile(the
current agent is depositing food). The table below summarises the coefficients of the reward structures in 2 different
settings. One setting learns a policy using only team rewards, the other learns a policy using both team rewards and
agent rewards.Note that the depositing food and water are equally weighed.

Reward Structure 1 Structure 2
Death -20 -20
λ1 0.05 0.05
λ1 0.05 0.05
µ1 0.0 0.1
µ2 0.0 0.1

TABLE 1. Reward Structure

5.4. Learning. We use actor critic formulation of the policy gradients to train the network. In this case we have two
networks with parameters θ and ϕ that represent the policy (actor) and value function (critic) for the agent. Both the
networks have shared parameters except for the last layer. Observations are processed as shown in 2 and are fed to a
LSTM for memory. The value and policy is obtained from the LSTM state.

We train the network by sampling episodes on policy. We train the policy and value using asynchronous methods
A3C in a distributed hierarchical fashion[8]. In this algorithm, there is a global thread that stores a global copy of the
weights of the policy and value networks for each agent. Furthermore, agents share a common learning environment
in a worker thread and each agent has its own local copy of a common (global) policy neural network for policy
and value estimation. Each epoch samples from this environment an episode with a fixed N sequence of transitions
st at, rt, st+1 for each agent using this local copy of the policy parameters. Since some agents can die due to the
environment definition, we store dummy observations and rewards for those transitions and these are neglected during
gradient computation.

The experience buffer is then passed to the global network for gradient computation and network update using the
PPO algorithm with the following losses. The value network is trained with the MSE loss as follows:

LV (ϕ) = Ê
[
R(st)− V (st;ϕ))

2
]

4 HARSH GOEL [HARSHG99@SEAS], GAURAV KUPPA [GAKUPPA@SEAS], ADITYA PRATAP SINGH [ADIPRS@SEAS],

where R(st) is the total discounted return from state t in the sampled trajectory.

R(st) = Ê
N∑
i=t

γi−tri

Since the training is asynchronous, at any the time global copy of the policy weights could be different from the
weights that were used to sample an experience buffer. Thus, the policy network is updated by using a clipped objective
function with PPO to prevent updates to the global policy network from samples that are far away from the policy. This
helps stabilise training over multiple CPUs and GPUs. The objective function is as follows:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)

]
rt(θ) =

πθ(at|st)
πθold(at|st)

where ϵ = 0.3. Ât is the generalised advantage function to reduce the variance in the policy gradients. It is defined as
follows:

Ât =

N∑
i=t

(λ)i−tδt

δt = rt + γV (st+1)− V (st)

FIGURE 2. Visualization of Foraging Environment in Neural MMO

6. EXPERIMENTAL RESULTS

6.1. Training Details. We train 2 models for the above-mentioned reward structures on a server where each model
is trained over 64 CPU cores and 1 V-100 GPU. The models are trained for 75000 episodes over 2 days where each
episode collects an experience buffer of maximum 256 timesteps. The data is collected parallely over the 64 cpu cores
over a version of the network parameters and the global network parameters are asynchronously updated with the
collected experience buffer once a worker thread completes an episode.

6.2. Metrics. We study the performance of the two reward structures with the implemented training architecture. We
report the following metrics:

(1) Average return per agent: Cumulative reward per agent per episode. It indicates whether the policy is training
and agents aren’t learning random behaviour.

(2) Episode length for the team: Average timesteps per episode till all agents in the team die. Indicates resource
collection potential of the team (more episode time available to maximise resources deposited).

(3) Average agent lifetime: Average life expectancy using the current policy. It indicates the whether the policy
learns behaviour that exploits the environment for individual benefit.

(4) Environment Exploration (after 32*4 timesteps): ratio of number of tiles seen in the environment to total
traversable tiles. Indicates team performance of exploring to find more resources to collect and deposit.

NEURAL MMO: COLLABORATIVE RESOURCE SHARING FOR MULTIPLE FORAGING AGENTS 5

(A) Episode Length and Return (B) Exploration Rate and Agent Lifetime

FIGURE 3. Training Results(Team rewards -Structure 1 only in Green, Team with Individual Rewards
- Structure 2 in Purple

6.3. Analysis. From the episodic returns curve, it is clear that both models learn some some behaviour for depositing
resources that is better than a random policy. The policy learnt through reward structure 1 shows to have better average
exploration compared to reward structure 2. This can be explained by the fact that by assigning individual rewards,
agents are incentivised to collect and deposit nearby resources to the depo from the environment and not move closer to
other agents to share resources. Due to the the finite lifespan, maximum resource capacity and resource consumption,
this behaviour wouldn’t allow for exploring the environment. This has a subtler consequence, as food resources
are exhaustible, agents would quickly exhaust nearby food resources and would die off quickly due to their internal
constraints. This leads to a slightly worse average lifetime per agent for the policy with reward structure 2 as shown in
Figure 3b.

After 75,000 interactions, policy from reward structure 2 seems to have higher team episode length, indicating that
one agent is more likely to survive in the team with individual rewards. This has a subtle explanation and we think
that this is due to the higher variance in terms of returns and average lifetime. This is introduced due to conception of
team rewards, since individual agents are rewarded if any agent on the team deposits resources, agents that perform
random behaviour might get rewarded even though their actions didn’t contribute to the team through resource sharing.
While this may help with exploration, it is likely to destabilise training as policy gradients would try improving both
explorative behaviour and exploitative behaviour without context, and lead to a policy that is sub-optimal.

7. CONCLUSIONS

In this paper, we leverage recent advances in distributed learning to propose a reinforcement learning solution
to multi-agent foraging with agent constraints. Our learned approach, endows agents with the ability to balance
exploitation and exploration to an extent using only team based rewards, but further improvements are necessary to
stabilise the training for situations where the network optimises explorative and exploitative behaviour without context.

This paper does show that policies can be learnt for np-hard multi agent problems in a decentralised manner that
may have multiple objectives and subtasks. Solutions that involve training decentralised policies are scalable and this
approach can be deployed on individual robots hence making it robust as compared to a centralised controller which for
many current multi robotic systems in industry is a critical point of failure.

The code can be found at https://github.com/gauravkuppa/neural mmo/tree/cleanrl.

6 HARSH GOEL [HARSHG99@SEAS], GAURAV KUPPA [GAKUPPA@SEAS], ADITYA PRATAP SINGH [ADIPRS@SEAS],

REFERENCES

[1] M. Yogeswaran, S. Ponnambalam, and G. Kanagaraj, “Reinforcement learning in swarm-robotics for multi-agent foraging-task domain,” in
Symposium on Swarm Intelligence (SIS). IEEE, 2013, pp. 15–21

[2] O. Zedadra, H. Seridi, N. Jouandeau, and G. Fortino, “A cooperative switching algorithm for multi-agent foraging,” Engineering Applications of
Artificial Intelligence, vol. 50, pp. 302–319, 2016.

[3] L. Panait and S. Luke, “A pheromone-based utility model for collaborative foraging,” in Proceedings of AAMAS. IEEE, 2004, pp. 36–43
[4] Papoudakis, G., Christianos, F., Rahman, A., Albrecht, S. V. (2019). Dealing with non-stationarity in multi-agent deep reinforcement learning.

arXiv preprint arXiv:1906.04737.
[5] Sutton, Richard; Barto, Andrew (1998). Reinforcement Learning: An Introduction. MIT Press
[6] Van Hasselt, Hado; Guez, Arthur; Silver, David (2015). ”Deep reinforcement learning with double Q-learning” (PDF). AAAI Conference on

Artificial Intelligence: 2094–2100. arXiv:1509.06461
[7] Sutton, Richard S., et al. ”Policy gradient methods for reinforcement learning with function approximation.” Advances in neural information

processing systems 12 (1999).
[8] Mnih, Volodymyr, et al. ”Asynchronous methods for deep reinforcement learning.” International conference on machine learning. PMLR, 2016.
[9] Christianos, F., Papoudakis, G., Rahman, M. A., Albrecht, S. V. (2021, July). Scaling multi-agent reinforcement learning with selective parameter

sharing. In International Conference on Machine Learning (pp. 1989-1998). PMLR.
[10] Jin, C., Liu, Q., Wang, Y., Yu, T. (2021). V-Learning–A Simple, Efficient, Decentralized Algorithm for Multiagent RL. arXiv preprint

arXiv:2110.14555.
[11] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel. “Trust region policy optimization”. In: CoRR, abs/1502.05477 (2015).
[12] Schulman, John, et al. ”Proximal policy optimization algorithms.” arXiv preprint arXiv:1707.06347 (2017).
[13] Shaw, S., Wenzel, E., Walker, A., Sartoretti, G. (2022). ForMIC: Foraging via Multiagent RL With Implicit Communication. IEEE Robotics

and Automation Letters, 7(2), 4877-4884.
[14] Hahn, C., Ritz, F., Wikidal, P., Phan, T., Gabor, T., Linnhoff-Popien, C. (2020, July). Foraging swarms using multi-agent reinforcement learning.

In ALIFE 2020: The 2020 Conference on Artificial Life (pp. 333-340). MIT Press.
[15] Yogeswaran, M., Ponnambalam, S. G., Kanagaraj, G. (2013, April). Reinforcement learning in swarm-robotics for multi-agent foraging-task

domain. In 2013 IEEE Symposium on Swarm Intelligence (SIS) (pp. 15-21). IEEE.
[16] Suarez, J., Du, Y., Isola, P., Mordatch, I. (2019). Neural mmo: A massively multiagent game environment for training and evaluating intelligent

agents. arXiv preprint arXiv:1903.00784.

	1. Introduction
	2. Background
	2.1. Reinforcement Learning (RL)
	2.2. Multi-agent Reinforcement Learning

	3. Related Work
	4. Problem Formulation
	4.1. Environment
	4.2. Agent
	4.3. Final Setup

	5. Approach
	5.1. Observation Space
	5.2. Action Space
	5.3. Reward Structure
	5.4. Learning

	6. Experimental Results
	6.1. Training Details
	6.2. Metrics
	6.3. Analysis

	7. Conclusions
	References

